Update modeling.py
Browse files- modeling.py +5 -3
modeling.py
CHANGED
@@ -1,12 +1,14 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import timm
|
4 |
from huggingface_hub import PyTorchModelHubMixin
|
5 |
|
6 |
class KeypointModel(nn.Module, PyTorchModelHubMixin):
|
7 |
-
def __init__(self,
|
8 |
super().__init__()
|
9 |
-
|
|
|
10 |
|
11 |
backbone = timm.create_model('convnextv2_base.fcmae_ft_in22k_in1k_384', pretrained=False)
|
12 |
|
@@ -15,7 +17,7 @@ class KeypointModel(nn.Module, PyTorchModelHubMixin):
|
|
15 |
self.head = nn.Sequential(
|
16 |
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1),
|
17 |
nn.ReLU(inplace=True),
|
18 |
-
nn.Upsample(size=
|
19 |
nn.Conv2d(256, 1, kernel_size=1)
|
20 |
)
|
21 |
|
|
|
1 |
+
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import timm
|
5 |
from huggingface_hub import PyTorchModelHubMixin
|
6 |
|
7 |
class KeypointModel(nn.Module, PyTorchModelHubMixin):
|
8 |
+
def __init__(self, config, **kwargs):
|
9 |
super().__init__()
|
10 |
+
|
11 |
+
upsample_size = config.heatmap_size
|
12 |
|
13 |
backbone = timm.create_model('convnextv2_base.fcmae_ft_in22k_in1k_384', pretrained=False)
|
14 |
|
|
|
17 |
self.head = nn.Sequential(
|
18 |
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1),
|
19 |
nn.ReLU(inplace=True),
|
20 |
+
nn.Upsample(size=upsample_size, mode='bilinear', align_corners=False),
|
21 |
nn.Conv2d(256, 1, kernel_size=1)
|
22 |
)
|
23 |
|