Create modeling.py
Browse files- modeling.py +25 -0
modeling.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
5 |
+
|
6 |
+
class KeypointModel(nn.Module, PyTorchModelHubMixin):
|
7 |
+
def __init__(self, heatmap_size=(512, 1024), **kwargs):
|
8 |
+
super().__init__()
|
9 |
+
config_heatmap_size = kwargs.get("config", {}).get("heatmap_size", heatmap_size)
|
10 |
+
|
11 |
+
backbone = timm.create_model('convnextv2_base.fcmae_ft_in22k_in1k_384', pretrained=False)
|
12 |
+
|
13 |
+
self.feature_extractor = nn.Sequential(*list(backbone.children())[:-2])
|
14 |
+
in_channels = backbone.num_features
|
15 |
+
self.head = nn.Sequential(
|
16 |
+
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1),
|
17 |
+
nn.ReLU(inplace=True),
|
18 |
+
nn.Upsample(size=config_heatmap_size, mode='bilinear', align_corners=False),
|
19 |
+
nn.Conv2d(256, 1, kernel_size=1)
|
20 |
+
)
|
21 |
+
|
22 |
+
def forward(self, image):
|
23 |
+
features = self.feature_extractor(image)
|
24 |
+
heatmap = self.head(features)
|
25 |
+
return heatmap
|