covid_fakenews_longformer_model

This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0571
  • Accuracy: 0.9787
  • F1: 0.9816
  • Precision: 0.9796
  • Recall: 0.9836

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 27 0.6234 0.7938 0.8324 0.7855 0.8852
No log 2.0 54 0.3374 0.8744 0.8959 0.8604 0.9344
No log 3.0 81 0.1397 0.9645 0.9702 0.9421 1.0
No log 4.0 108 0.1219 0.9621 0.9672 0.9672 0.9672
No log 4.8341 130 0.0571 0.9787 0.9816 0.9796 0.9836

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.2.1
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
149M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for prodm93/covid_fakenews_classifier_LF

Finetuned
(111)
this model