Vision Language Models
Collection
Grounding, chat
•
10 items
•
Updated
•
4
The Qwen2-VL-OCR-2B-Instruct model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct, tailored for tasks that involve Optical Character Recognition (OCR), image-to-text conversion, math problem solving with LaTeX formatting and Messy Handwriting OCR. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively.
File Name | Size | Quantization | Format | Description |
---|---|---|---|---|
Qwen2-VL-OCR-2B-Instruct.f16.gguf |
3.09 GB | FP16 | GGUF | Full precision (float16) |
Qwen2-VL-OCR-2B-Instruct.Q2_K.gguf |
676 MB | Q2_K | GGUF | 2-bit quantized |
Qwen2-VL-OCR-2B-Instruct.Q3_K_L.gguf |
880 MB | Q3_K_L | GGUF | 3-bit quantized (K L variant) |
Qwen2-VL-OCR-2B-Instruct.Q3_K_M.gguf |
824 MB | Q3_K_M | GGUF | 3-bit quantized (K M variant) |
Qwen2-VL-OCR-2B-Instruct.Q3_K_S.gguf |
761 MB | Q3_K_S | GGUF | 3-bit quantized (K S variant) |
Qwen2-VL-OCR-2B-Instruct.Q4_K_M.gguf |
986 MB | Q4_K_M | GGUF | 4-bit quantized (K M variant) |
Qwen2-VL-OCR-2B-Instruct.Q4_K_S.gguf |
940 MB | Q4_K_S | GGUF | 4-bit quantized (K S variant) |
Qwen2-VL-OCR-2B-Instruct.Q5_K_M.gguf |
1.13 GB | Q5_K_M | GGUF | 5-bit quantized (K M variant) |
Qwen2-VL-OCR-2B-Instruct.Q5_K_S.gguf |
1.1 GB | Q5_K_S | GGUF | 5-bit quantized (K S variant) |
Qwen2-VL-OCR-2B-Instruct.Q6_K.gguf |
1.27 GB | Q6_K | GGUF | 6-bit quantized |
Qwen2-VL-OCR-2B-Instruct.Q8_0.gguf |
1.65 GB | Q8_0 | GGUF | 8-bit quantized |
File Name | Size | Quantization | Description |
---|---|---|---|
Qwen2-VL-OCR-2B-Instruct.i1-IQ1_M.gguf |
464 MB | i1-IQ1_M | i1 1-bit medium |
Qwen2-VL-OCR-2B-Instruct.i1-IQ1_S.gguf |
437 MB | i1-IQ1_S | i1 1-bit small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ2_M.gguf |
601 MB | i1-IQ2_M | i1 2-bit medium |
Qwen2-VL-OCR-2B-Instruct.i1-IQ2_S.gguf |
564 MB | i1-IQ2_S | i1 2-bit small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ2_XS.gguf |
550 MB | i1-IQ2_XS | i1 2-bit extra small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ2_XXS.gguf |
511 MB | i1-IQ2_XXS | i1 2-bit extra extra small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ3_M.gguf |
777 MB | i1-IQ3_M | i1 3-bit medium |
Qwen2-VL-OCR-2B-Instruct.i1-IQ3_S.gguf |
762 MB | i1-IQ3_S | i1 3-bit small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ3_XS.gguf |
732 MB | i1-IQ3_XS | i1 3-bit extra small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ3_XXS.gguf |
669 MB | i1-IQ3_XXS | i1 3-bit extra extra small |
Qwen2-VL-OCR-2B-Instruct.i1-IQ4_NL.gguf |
936 MB | i1-IQ4_NL | i1 4-bit with no-layernorm quantization |
Qwen2-VL-OCR-2B-Instruct.i1-IQ4_XS.gguf |
896 MB | i1-IQ4_XS | i1 4-bit extra small |
Qwen2-VL-OCR-2B-Instruct.i1-Q4_0.gguf |
938 MB | i1-Q4_0 | i1 4-bit traditional quant |
Qwen2-VL-OCR-2B-Instruct.i1-Q4_1.gguf |
1.02 GB | i1-Q4_1 | i1 4-bit traditional variant |
File Name | Size | Description |
---|---|---|
.gitattributes |
3.37 kB | Git LFS tracking file |
config.json |
34 B | Config placeholder |
README.md |
672 B | Model readme |
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Link | Type | Size/GB | Notes |
---|---|---|---|
GGUF | Q2_K | 0.4 | |
GGUF | Q3_K_S | 0.5 | |
GGUF | Q3_K_M | 0.5 | lower quality |
GGUF | Q3_K_L | 0.5 | |
GGUF | IQ4_XS | 0.6 | |
GGUF | Q4_K_S | 0.6 | fast, recommended |
GGUF | Q4_K_M | 0.6 | fast, recommended |
GGUF | Q5_K_S | 0.6 | |
GGUF | Q5_K_M | 0.7 | |
GGUF | Q6_K | 0.7 | very good quality |
GGUF | Q8_0 | 0.9 | fast, best quality |
GGUF | f16 | 1.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
1-bit
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
Base model
Qwen/Qwen2-VL-2B