prithivMLmods's picture
Update README.md
ad73f36 verified
metadata
license: apache-2.0
language:
  - en
base_model:
  - prithivMLmods/Lacaille-MoT-4B-Supreme2
pipeline_tag: text-generation
library_name: transformers
tags:
  - text-generation-inference
  - math
  - code
  - science

Lacaille-MoT-4B-Supreme2-GGUF

Lacaille-MoT-4B-Supreme2 is a high-efficiency, multi-domain model fine-tuned on Qwen3-4B using the Mixture of Thoughts (MoT) dataset enhanced with code, math, science expert clusters and an extended open code reasoning dataset. This model blends symbolic precision, scientific logic, and structured output fluency—making it an ideal tool for developers, educators, and researchers seeking advanced reasoning under constrained compute.

Model File Table

File Name Size Format Description
Lacaille-MoT-4B-Supreme2.BF16.gguf 8.05 GB GGUF (BF16) BFloat16 precision model file
Lacaille-MoT-4B-Supreme2.F16.gguf 8.05 GB GGUF (F16) Float16 precision model file
Lacaille-MoT-4B-Supreme2.F32.gguf 16.1 GB GGUF (F32) Float32 precision model file
Lacaille-MoT-4B-Supreme2.Q4_K_M.gguf 2.5 GB GGUF (Q4_K_M) 4-bit quantized model file
Lacaille-MoT-4B-Supreme2.Q5_K_M.gguf 2.89 GB GGUF (Q5_K_M) 5-bit quantized model file
Lacaille-MoT-4B-Supreme2.Q8_0.gguf 4.28 GB GGUF (Q8_0) 8-bit quantized model file
config.json 31 B JSON Configuration file
.gitattributes 1.95 kB Text Git attributes configuration

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png