Siglip2 Custom
Collection
SiglipForImageClassification
•
5 items
•
Updated
•
11
Fire-Detection-Siglip2 is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to detect fire, smoke, or normal conditions using the SiglipForImageClassification architecture.
The model categorizes images into three classes:
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Fire-Detection-Siglip2"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def fire_detection(image):
"""Classifies an image as fire, smoke, or normal conditions."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = model.config.id2label
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=fire_detection,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Detection Result"),
title="Fire Detection Model",
description="Upload an image to determine if it contains fire, smoke, or a normal condition."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
Classification report:
precision recall f1-score support
fire 0.9940 0.9881 0.9911 1010
normal 0.9892 0.9941 0.9916 1010
smoke 0.9990 1.0000 0.9995 1010
accuracy 0.9941 3030
macro avg 0.9941 0.9941 0.9941 3030
weighted avg 0.9941 0.9941 0.9941 3030
The Fire-Detection-Siglip2 model is designed to classify images into three categories: fire, smoke, or normal conditions. It helps in early fire detection and environmental monitoring.
Base model
google/siglip2-base-patch16-224