SigLIP2 05102025
Collection
Moderation, Balance, Classifiers
•
9 items
•
Updated
•
3
Face-Mask-Detection is a binary image classification model based on
google/siglip2-base-patch16-224
, trained to detect whether a person is wearing a face mask or not. This model can be used in public health monitoring, access control systems, and workplace compliance enforcement.
Classification Report:
precision recall f1-score support
Face_Mask Found 0.9662 0.9561 0.9611 5883
Face_Mask Not_Found 0.9568 0.9667 0.9617 5909
accuracy 0.9614 11792
macro avg 0.9615 0.9614 0.9614 11792
weighted avg 0.9615 0.9614 0.9614 11792
The model distinguishes between the following face mask statuses:
0: Face_Mask Found
1: Face_Mask Not_Found
pip install transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Face-Mask-Detection"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# ID to label mapping
id2label = {
"0": "Face_Mask Found",
"1": "Face_Mask Not_Found"
}
def detect_face_mask(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=detect_face_mask,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Mask Status"),
title="Face-Mask-Detection",
description="Upload an image to check if a person is wearing a face mask or not."
)
if __name__ == "__main__":
iface.launch()
Base model
google/siglip2-base-patch16-224