Improve language tag
#2
by
lbourdois
- opened
README.md
CHANGED
@@ -1,218 +1,229 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
language:
|
4 |
-
-
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
name:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
name:
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
name:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
name:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
type:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
name:
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
)
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zho
|
5 |
+
- eng
|
6 |
+
- fra
|
7 |
+
- spa
|
8 |
+
- por
|
9 |
+
- deu
|
10 |
+
- ita
|
11 |
+
- rus
|
12 |
+
- jpn
|
13 |
+
- kor
|
14 |
+
- vie
|
15 |
+
- tha
|
16 |
+
- ara
|
17 |
+
base_model:
|
18 |
+
- Qwen/Qwen2.5-14B-Instruct
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
library_name: transformers
|
21 |
+
tags:
|
22 |
+
- text-generation-inference
|
23 |
+
- math
|
24 |
+
- code
|
25 |
+
- trl
|
26 |
+
- sft
|
27 |
+
model-index:
|
28 |
+
- name: Epimetheus-14B-Axo
|
29 |
+
results:
|
30 |
+
- task:
|
31 |
+
type: text-generation
|
32 |
+
name: Text Generation
|
33 |
+
dataset:
|
34 |
+
name: IFEval (0-Shot)
|
35 |
+
type: wis-k/instruction-following-eval
|
36 |
+
split: train
|
37 |
+
args:
|
38 |
+
num_few_shot: 0
|
39 |
+
metrics:
|
40 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
41 |
+
value: 55.46
|
42 |
+
name: averaged accuracy
|
43 |
+
source:
|
44 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FEpimetheus-14B-Axo
|
45 |
+
name: Open LLM Leaderboard
|
46 |
+
- task:
|
47 |
+
type: text-generation
|
48 |
+
name: Text Generation
|
49 |
+
dataset:
|
50 |
+
name: BBH (3-Shot)
|
51 |
+
type: SaylorTwift/bbh
|
52 |
+
split: test
|
53 |
+
args:
|
54 |
+
num_few_shot: 3
|
55 |
+
metrics:
|
56 |
+
- type: acc_norm
|
57 |
+
value: 51.46
|
58 |
+
name: normalized accuracy
|
59 |
+
source:
|
60 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FEpimetheus-14B-Axo
|
61 |
+
name: Open LLM Leaderboard
|
62 |
+
- task:
|
63 |
+
type: text-generation
|
64 |
+
name: Text Generation
|
65 |
+
dataset:
|
66 |
+
name: MATH Lvl 5 (4-Shot)
|
67 |
+
type: lighteval/MATH-Hard
|
68 |
+
split: test
|
69 |
+
args:
|
70 |
+
num_few_shot: 4
|
71 |
+
metrics:
|
72 |
+
- type: exact_match
|
73 |
+
value: 41.01
|
74 |
+
name: exact match
|
75 |
+
source:
|
76 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FEpimetheus-14B-Axo
|
77 |
+
name: Open LLM Leaderboard
|
78 |
+
- task:
|
79 |
+
type: text-generation
|
80 |
+
name: Text Generation
|
81 |
+
dataset:
|
82 |
+
name: GPQA (0-shot)
|
83 |
+
type: Idavidrein/gpqa
|
84 |
+
split: train
|
85 |
+
args:
|
86 |
+
num_few_shot: 0
|
87 |
+
metrics:
|
88 |
+
- type: acc_norm
|
89 |
+
value: 19.02
|
90 |
+
name: acc_norm
|
91 |
+
source:
|
92 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FEpimetheus-14B-Axo
|
93 |
+
name: Open LLM Leaderboard
|
94 |
+
- task:
|
95 |
+
type: text-generation
|
96 |
+
name: Text Generation
|
97 |
+
dataset:
|
98 |
+
name: MuSR (0-shot)
|
99 |
+
type: TAUR-Lab/MuSR
|
100 |
+
args:
|
101 |
+
num_few_shot: 0
|
102 |
+
metrics:
|
103 |
+
- type: acc_norm
|
104 |
+
value: 19.71
|
105 |
+
name: acc_norm
|
106 |
+
source:
|
107 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FEpimetheus-14B-Axo
|
108 |
+
name: Open LLM Leaderboard
|
109 |
+
- task:
|
110 |
+
type: text-generation
|
111 |
+
name: Text Generation
|
112 |
+
dataset:
|
113 |
+
name: MMLU-PRO (5-shot)
|
114 |
+
type: TIGER-Lab/MMLU-Pro
|
115 |
+
config: main
|
116 |
+
split: test
|
117 |
+
args:
|
118 |
+
num_few_shot: 5
|
119 |
+
metrics:
|
120 |
+
- type: acc
|
121 |
+
value: 47.82
|
122 |
+
name: accuracy
|
123 |
+
source:
|
124 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FEpimetheus-14B-Axo
|
125 |
+
name: Open LLM Leaderboard
|
126 |
+
---
|
127 |
+

|
128 |
+
|
129 |
+
# **Epimetheus-14B-Axo**
|
130 |
+
|
131 |
+
> Epimetheus-14B-Axo is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. This model is optimized for general-purpose reasoning and answering, excelling in contextual understanding, logical deduction, and multi-step problem-solving. It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets to improve comprehension, structured responses, and conversational intelligence.
|
132 |
+
|
133 |
+
## **Key Improvements**
|
134 |
+
1. **Enhanced General Knowledge**: The model provides broad knowledge across various domains, improving capabilities in answering questions accurately and generating coherent responses.
|
135 |
+
2. **Improved Instruction Following**: Significant advancements in understanding and following complex instructions, generating structured responses, and maintaining coherence over extended interactions.
|
136 |
+
3. **Versatile Adaptability**: More resilient to diverse prompts, enhancing its ability to handle a wide range of topics and conversation styles, including open-ended and structured inquiries.
|
137 |
+
4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed responses.
|
138 |
+
5. **Multilingual Proficiency**: Supports over 29 languages, including English, Chinese, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
|
139 |
+
|
140 |
+
## **Quickstart with transformers**
|
141 |
+
|
142 |
+
Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
|
143 |
+
|
144 |
+
```python
|
145 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
146 |
+
|
147 |
+
model_name = "prithivMLmods/Epimetheus-14B-Axo"
|
148 |
+
|
149 |
+
model = AutoModelForCausalLM.from_pretrained(
|
150 |
+
model_name,
|
151 |
+
torch_dtype="auto",
|
152 |
+
device_map="auto"
|
153 |
+
)
|
154 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
155 |
+
|
156 |
+
prompt = "What are the key principles of general-purpose AI?"
|
157 |
+
messages = [
|
158 |
+
{"role": "system", "content": "You are a helpful assistant capable of answering a wide range of questions."},
|
159 |
+
{"role": "user", "content": prompt}
|
160 |
+
]
|
161 |
+
text = tokenizer.apply_chat_template(
|
162 |
+
messages,
|
163 |
+
tokenize=False,
|
164 |
+
add_generation_prompt=True
|
165 |
+
)
|
166 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
167 |
+
|
168 |
+
generated_ids = model.generate(
|
169 |
+
**model_inputs,
|
170 |
+
max_new_tokens=512
|
171 |
+
)
|
172 |
+
generated_ids = [
|
173 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
174 |
+
]
|
175 |
+
|
176 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
177 |
+
```
|
178 |
+
|
179 |
+
## **Intended Use**
|
180 |
+
1. **General-Purpose Reasoning**:
|
181 |
+
Designed for broad applicability, assisting with logical reasoning, answering diverse questions, and solving general knowledge problems.
|
182 |
+
|
183 |
+
2. **Educational and Informational Assistance**:
|
184 |
+
Suitable for providing explanations, summaries, and research-based responses for students, educators, and general users.
|
185 |
+
|
186 |
+
3. **Conversational AI and Chatbots**:
|
187 |
+
Ideal for building intelligent conversational agents that require contextual understanding and dynamic response generation.
|
188 |
+
|
189 |
+
4. **Multilingual Applications**:
|
190 |
+
Supports global communication, translations, and multilingual content generation.
|
191 |
+
|
192 |
+
5. **Structured Data Processing**:
|
193 |
+
Capable of analyzing and generating structured outputs, such as tables and JSON, useful for data science and automation.
|
194 |
+
|
195 |
+
6. **Long-Form Content Generation**:
|
196 |
+
Can generate extended responses, including articles, reports, and guides, maintaining coherence over large text outputs.
|
197 |
+
|
198 |
+
## **Limitations**
|
199 |
+
1. **Hardware Requirements**:
|
200 |
+
Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
|
201 |
+
|
202 |
+
2. **Potential Bias in Responses**:
|
203 |
+
While designed to be neutral, outputs may still reflect biases present in training data.
|
204 |
+
|
205 |
+
3. **Inconsistent Outputs in Creative Tasks**:
|
206 |
+
May produce variable results in storytelling and highly subjective topics.
|
207 |
+
|
208 |
+
4. **Limited Real-World Awareness**:
|
209 |
+
Does not have access to real-time events beyond its training cutoff.
|
210 |
+
|
211 |
+
5. **Error Propagation in Extended Outputs**:
|
212 |
+
Minor errors in early responses may affect overall coherence in long-form outputs.
|
213 |
+
|
214 |
+
6. **Prompt Sensitivity**:
|
215 |
+
The effectiveness of responses may depend on how well the input prompt is structured.
|
216 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
217 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Epimetheus-14B-Axo-details)!
|
218 |
+
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FEpimetheus-14B-Axo&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
|
219 |
+
|
220 |
+
| Metric |Value (%)|
|
221 |
+
|-------------------|--------:|
|
222 |
+
|**Average** | 39.08|
|
223 |
+
|IFEval (0-Shot) | 55.46|
|
224 |
+
|BBH (3-Shot) | 51.46|
|
225 |
+
|MATH Lvl 5 (4-Shot)| 41.01|
|
226 |
+
|GPQA (0-shot) | 19.02|
|
227 |
+
|MuSR (0-shot) | 19.71|
|
228 |
+
|MMLU-PRO (5-shot) | 47.82|
|
229 |
+
|