SigLIP2 042025
Collection
Age, Gender, Race and More ..
•
13 items
•
Updated
•
2
AI-vs-Deepfake-vs-Real-9999 is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to detect whether an image is AI-generated, a deepfake, or a real one using the SiglipForImageClassification architecture.
Classification Report:
precision recall f1-score support
Artificial 0.9994 0.9979 0.9986 3333
Deepfake 0.9979 0.9994 0.9987 3333
Real one 0.9994 0.9994 0.9994 3333
accuracy 0.9989 9999
macro avg 0.9989 0.9989 0.9989 9999
weighted avg 0.9989 0.9989 0.9989 9999
The model categorizes images into three classes:
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/AI-vs-Deepfake-vs-Real-9999"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def classify_image(image):
"""Predicts whether an image is Artificial, Deepfake, or Real."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "Artificial", "1": "Deepfake", "2": "Real one"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="AI vs. Deepfake vs. Real Image Classification",
description="Upload an image to determine if it's AI-generated, a Deepfake, or a Real one."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
The AI-vs-Deepfake-vs-Real-9999 model is designed to classify images into three categories: AI-generated, deepfake, or real. Potential use cases include:
Base model
google/siglip2-base-patch16-224