Uploaded model

  • Developed by: prismdata
  • License: apache-2.0
  • Finetuned from model : unsloth/qwen2-0.5b-bnb-4bit

This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

It does not needs too much big memory

Inference sample

from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
import time

device = "cpu"
model = AutoModelForCausalLM.from_pretrained("prismdata/KDI-Qwen2-instruction-0.5B",cache_dir="./", device_map = device)
tokenizer = AutoTokenizer.from_pretrained("prismdata/KDI-Qwen2-instruction-0.5B",cache_dir="./", device_map =device)

prompt_template = """A chat between a curious user and an artificial intelligence assistant. 
The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"""
text = 'Centrelink가 뭐야?'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt').to(device)

start = time.time()
outputs = model.generate(**model_inputs, max_new_tokens=256).to(device)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
end = time.time()
print(f"{end - start:.5f} sec")
Downloads last month
9
Safetensors
Model size
494M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prismdata/KDI-Qwen2-instruction-0.5B

Quantizations
1 model

Dataset used to train prismdata/KDI-Qwen2-instruction-0.5B