See axolotl config
axolotl version: 0.4.0
base_model: prince-canuma/Llama-3-6B-v0
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: prince-canuma/fineweb-CC-MAIN-2024-10-1B-en
type: completion
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./llama-3-6b
save_safetensors: true
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false
lora_r: 128
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama-3-6b
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-4
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
save_steps: 4000
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|reserved_special_token_0|>"
llama-3-6b
This model is a fine-tuned version of prince-canuma/Llama-3-6B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4942
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
7.1562 | 0.0 | 1 | 7.1806 |
2.7339 | 0.25 | 5867 | 2.6266 |
2.6905 | 0.5 | 11734 | 2.5872 |
2.6134 | 0.75 | 17601 | 2.5549 |
2.532 | 1.0 | 23468 | 2.5235 |
2.5319 | 1.25 | 29335 | 2.5067 |
2.3336 | 1.5 | 35202 | 2.4968 |
2.3486 | 1.75 | 41069 | 2.4942 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
Model tree for prince-canuma/Llama-3-6B-v0.1-adapters
Base model
prince-canuma/Llama-3-6B-v0
Finetuned
prince-canuma/Llama-3-6B-v0.1