SentenceTransformer based on sentence-transformers/clip-ViT-L-14

This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-L-14 on the my-learning-ds dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): CLIPModel()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("prashgec/clip-title-thumbnail-embeddings")
# Run inference
sentences = [
    '5 Questions Every Data Scientist Should Hardcode into Their Brain',
    'How to Improve LLMs with Tools (ft. OpenAI Agents SDK)',
    'ML Foundations for AI Engineers (in 34 Minutes)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6706, 0.7328],
#         [0.6706, 1.0000, 0.8154],
#         [0.7328, 0.8154, 1.0000]])

Evaluation

Metrics

Triplet

  • Datasets: yt-title-thumbnail-train and yt-title-thumbnail-valid
  • Evaluated with TripletEvaluator
Metric yt-title-thumbnail-train yt-title-thumbnail-valid
cosine_accuracy 1.0 0.8667

Training Details

Training Dataset

my-learning-ds

  • Dataset: my-learning-ds at 70c7274
  • Size: 70 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 70 samples:
    anchor positive negative
    type PIL.JpegImagePlugin.JpegImageFile string string
    details
    • min: 8 tokens
    • mean: 15.13 tokens
    • max: 27 tokens
    • min: 8 tokens
    • mean: 15.34 tokens
    • max: 27 tokens
  • Samples:
    anchor positive negative
    Causal Effects An introduction
    3 Ways to Make a Custom AI Assistant RAG, Tools, & Fine-tuning
    Prompt Engineering: How to Trick AI into Solving Your Problems Dimensionality Reduction & Segmentation with Decision Trees
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

my-learning-ds

  • Dataset: my-learning-ds at 70c7274
  • Size: 15 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 15 samples:
    anchor positive negative
    type PIL.JpegImagePlugin.JpegImageFile string string
    details
    • min: 8 tokens
    • mean: 14.07 tokens
    • max: 22 tokens
    • min: 10 tokens
    • mean: 15.0 tokens
    • max: 21 tokens
  • Samples:
    anchor positive negative
    The Wavelet Transform Introduction & Example Code
    Smoothing Crypto Time Series with Wavelets Real-world Data Project
    3 Reasons Businesses Should NOT Use AI Fine-tuning Large Language Models (LLMs)
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 0.0001
  • num_train_epochs: 2

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss yt-title-thumbnail-train_cosine_accuracy yt-title-thumbnail-valid_cosine_accuracy
-1 -1 - - 0.9571 0.8000
0.2 1 2.0436 - - -
0.4 2 2.1845 - - -
0.6 3 1.9404 - - -
0.8 4 2.0339 - - -
1.0 5 0.9129 2.2639 - -
1.2 6 1.3342 - - -
1.4 7 1.6938 - - -
1.6 8 1.6759 - - -
1.8 9 1.423 - - -
2.0 10 0.7338 2.2676 - -
-1 -1 - - 1.0 0.8667

Framework Versions

  • Python: 3.9.23
  • Sentence Transformers: 5.0.0
  • Transformers: 4.53.2
  • PyTorch: 2.7.1
  • Accelerate: 1.9.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
5
Safetensors
Model size
428M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prashgec/clip-title-thumbnail-embeddings

Finetuned
(8)
this model

Dataset used to train prashgec/clip-title-thumbnail-embeddings

Evaluation results