bert-base-nsmc
This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0267
- Train Accuracy: 0.9924
- Validation Loss: 0.5310
- Validation Accuracy: 0.8758
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.3950 | 0.8193 | 0.3054 | 0.8692 | 0 |
0.2194 | 0.9135 | 0.3294 | 0.8688 | 1 |
0.1033 | 0.9644 | 0.3800 | 0.8718 | 2 |
0.0493 | 0.9857 | 0.5039 | 0.8768 | 3 |
0.0267 | 0.9924 | 0.5310 | 0.8758 | 4 |
Framework versions
- Transformers 4.48.3
- TensorFlow 2.18.0
- Tokenizers 0.21.0
- Downloads last month
- 5
Model tree for pprain/bert-base-nsmc
Base model
klue/bert-base