metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-turkish-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.22010009192115207
wav2vec2-large-mms-1b-turkish-colab
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1550
- Wer: 0.2201
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.1682 | 0.9174 | 100 | 0.1864 | 0.2521 |
0.284 | 1.8349 | 200 | 0.1645 | 0.2298 |
0.2628 | 2.7523 | 300 | 0.1586 | 0.2263 |
0.2389 | 3.6697 | 400 | 0.1550 | 0.2201 |
Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1