arnabdhar's picture
End of training
25437c4
metadata
language:
  - en
license: mit
base_model: roberta-base
tags:
  - pytorch
  - RobertaForTokenClassification
  - named-entity-recognition
  - roberta-base
  - generated_from_trainer
metrics:
  - recall
  - precision
  - f1
  - accuracy
model-index:
  - name: roberta-base-ontonotes
    results: []

roberta-base-ontonotes

This model is a fine-tuned version of roberta-base on the tner/ontonotes5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0695
  • Recall: 0.9227
  • Precision: 0.9013
  • F1: 0.9118
  • Accuracy: 0.9820

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 32
  • eval_batch_size: 160
  • seed: 75241309
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Recall Precision F1 Accuracy
0.1305 0.31 600 0.1169 0.8550 0.8139 0.8340 0.9681
0.118 0.63 1200 0.0925 0.8769 0.8592 0.8680 0.9750
0.0937 0.94 1800 0.0874 0.8939 0.8609 0.8771 0.9764
0.0698 1.25 2400 0.0821 0.9066 0.8775 0.8918 0.9784
0.0663 1.56 3000 0.0827 0.9124 0.8764 0.8940 0.9789
0.0624 1.88 3600 0.0732 0.9179 0.8868 0.9021 0.9804
0.0364 2.19 4200 0.0750 0.9204 0.8968 0.9085 0.9816
0.0429 2.5 4800 0.0699 0.9198 0.9031 0.9114 0.9818
0.0323 2.82 5400 0.0697 0.9227 0.9008 0.9116 0.9819
0.0334 3.13 6000 0.0695 0.9227 0.9013 0.9118 0.9820

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0