distil_vanilla
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.9608
- Accuracy: 0.795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 25 | 0.5529 | 0.72 |
No log | 2.0 | 50 | 0.5398 | 0.745 |
No log | 3.0 | 75 | 0.4987 | 0.7675 |
No log | 4.0 | 100 | 0.5019 | 0.79 |
No log | 5.0 | 125 | 0.5674 | 0.7875 |
No log | 6.0 | 150 | 0.6207 | 0.8025 |
No log | 7.0 | 175 | 0.6747 | 0.7975 |
No log | 8.0 | 200 | 0.6935 | 0.795 |
No log | 9.0 | 225 | 0.7399 | 0.7975 |
No log | 10.0 | 250 | 0.7689 | 0.81 |
No log | 11.0 | 275 | 0.8257 | 0.79 |
No log | 12.0 | 300 | 0.8732 | 0.785 |
No log | 13.0 | 325 | 0.8766 | 0.79 |
No log | 14.0 | 350 | 0.8985 | 0.8 |
No log | 15.0 | 375 | 0.9504 | 0.78 |
No log | 16.0 | 400 | 0.9379 | 0.79 |
No log | 17.0 | 425 | 0.9633 | 0.7925 |
No log | 18.0 | 450 | 0.9582 | 0.7925 |
No log | 19.0 | 475 | 0.9602 | 0.795 |
0.1096 | 20.0 | 500 | 0.9608 | 0.795 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for philip1231/distil_vanilla
Base model
distilbert/distilbert-base-uncased