distil_vanilla

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9608
  • Accuracy: 0.795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 25 0.5529 0.72
No log 2.0 50 0.5398 0.745
No log 3.0 75 0.4987 0.7675
No log 4.0 100 0.5019 0.79
No log 5.0 125 0.5674 0.7875
No log 6.0 150 0.6207 0.8025
No log 7.0 175 0.6747 0.7975
No log 8.0 200 0.6935 0.795
No log 9.0 225 0.7399 0.7975
No log 10.0 250 0.7689 0.81
No log 11.0 275 0.8257 0.79
No log 12.0 300 0.8732 0.785
No log 13.0 325 0.8766 0.79
No log 14.0 350 0.8985 0.8
No log 15.0 375 0.9504 0.78
No log 16.0 400 0.9379 0.79
No log 17.0 425 0.9633 0.7925
No log 18.0 450 0.9582 0.7925
No log 19.0 475 0.9602 0.795
0.1096 20.0 500 0.9608 0.795

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for philip1231/distil_vanilla

Finetuned
(8583)
this model

Evaluation results