distil_low_lr

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8611
  • Accuracy: 0.745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 25 0.6622 0.5975
No log 2.0 50 0.6039 0.67
No log 3.0 75 0.5630 0.71
No log 4.0 100 0.5624 0.7075
No log 5.0 125 0.5749 0.7325
No log 6.0 150 0.5818 0.73
No log 7.0 175 0.6017 0.735
No log 8.0 200 0.6407 0.735
No log 9.0 225 0.6702 0.74
No log 10.0 250 0.6999 0.74
No log 11.0 275 0.7251 0.7325
No log 12.0 300 0.7472 0.735
No log 13.0 325 0.7647 0.745
No log 14.0 350 0.7962 0.74
No log 15.0 375 0.8120 0.7325
No log 16.0 400 0.8283 0.745
No log 17.0 425 0.8366 0.7425
No log 18.0 450 0.8481 0.745
No log 19.0 475 0.8588 0.7425
0.2302 20.0 500 0.8611 0.745

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for philip1231/distil_low_lr

Finetuned
(8585)
this model

Evaluation results