TermBERT
Collection
2 items
•
Updated
Fine-tuned EuroBERT-610M for disambiguating International Relations term senses in German.
This model distinguishes between specialized (International Relations) and colloquial usage of German political science terms:
Input: "Die internationale Norm verbietet den Einsatz von Gewalt."
Output: IR sense (specialized usage)
Input: "Das entspricht nicht den technischen Normen in Deutschland."
Output: Colloquial sense (general usage)
| Term | F1 Score |
|---|---|
| Entspannung | 0.967 |
| Intervention | 0.949 |
| Integration | 0.933 |
| Kooperation | 0.926 |
| Norm | 0.831 |
| Regime | 0.828 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model_name = "pdjohn/T-EBERT-term-sense-german"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Classify a sentence
sentence = "Die internationale Norm verbietet den Einsatz von Gewalt."
inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits, dim=1).item()
# Interpretation
labels = {0: "Colloquial", 1: "IR Sense"}
print(f"Prediction: {labels[prediction]}")
This work was conducted as part of the Tracing International Institutions and Behavior (TIIB) project at TU Darmstadt.
Affiliation: Chair of Transnational Governance, Department of Political Science, Technische Universität Darmstadt
We thank the TIIB project team for their support and the manual annotation of the training corpus.