C-EBERT-210m / README.md
pdjohn's picture
Update README.md
107300c verified
---
library_name: transformers
license: apache-2.0
language:
- de
base_model:
- EuroBERT/EuroBERT-210m
pipeline_tag: token-classification
---
# C-EBERT
C-EBERT is a multi-task fine-tuned German EuroBERT to extract causal attribution.
## Model details
- **Model architecture**: EuroBERT-210m + token & relation heads
- **Fine-tuned on**: environmental causal attribution corpus (German)
- **Tasks**:
1. Token classification (BIO tags for INDICATOR / ENTITY)
2. Relation classification (CAUSE, EFFECT, INTERDEPENDENCY)
## Usage
Find the custom [library](https://github.com/padjohn/causalbert). Once installed, run inference like so:
```python
from transformers import AutoTokenizer
from causalbert.infer import load_model, analyze_sentence_with_confidence
model, tokenizer, config, device = load_model("pdjohn/C-EBERT")
result = analyze_sentence_with_confidence(
model, tokenizer, config, "Autoverkehr verursacht Bienensterben.", []
)
```
## Training
- **Base model**: `EuroBERT/EuroBERT-210m`
- **Epochs**: 3, **LR**: 2e-5, **Batch size**: 8
- See [train.py](https://github.com/padjohn/causalbert/blob/main/causalbert/train.py) for details.
## Limitations
- German only.
- Sentence-level; doesn’t handle cross-sentence causality.
- Relation classification depends on detected spans — errors in token tagging propagate.