MoEstral-2x7B
Are 2 models better than 1?
MoEstral-2x2B is a Mixure of Experts (MoE) made with the following models using mergekit:
🧩 Configuration
base_model: mistralai/Mistral-7B-Instruct-v0.2
gate_mode: cheap_embed
dtype: float16
experts:
- source_model: mistralai/Mistral-7B-Instruct-v0.2
positive_prompts: ["science, logic, math"]
- source_model: mistralai/Mistral-7B-Instruct-v0.2
positive_prompts: ["reasoning, numbers, abstract"]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "paulilioaica/MoEstral-2x2B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 66.34 |
AI2 Reasoning Challenge (25-Shot) | 65.10 |
HellaSwag (10-Shot) | 84.82 |
MMLU (5-Shot) | 61.62 |
TruthfulQA (0-shot) | 62.72 |
Winogrande (5-shot) | 78.37 |
GSM8k (5-shot) | 45.41 |
- Downloads last month
- 94
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for paulilioaica/MoEstral-2x7B
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard65.100
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.820
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard61.620
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard62.720
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard78.370
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard45.410