Inference with SageMaker predictor
#11
by
michalkowalczuk
- opened
Hi all :)
Could anybody help me figure out what data I need to pass to the predictor after deploying the model with SageMaker.
When (code similar to) this completes:
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'patrickjohncyh/fashion-clip',
'HF_TASK':'zero-shot-image-classification'
}
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
transformers_version='4.26.0',
pytorch_version='1.13.1',
py_version='py39',
env=hub,
role=role,
)
# deploy model to SageMaker Inference
predictor = huggingface_model.deploy(
initial_instance_count=1, # number of instances
instance_type='ml.m5.xlarge' # ec2 instance type
)
What data needs to be passed to the predictor to get the result:
data = {
"inputs": {
# what goes here?
}
}
predictor.predict(data)
Thank you very much,
Michal
Hey Michal, did you sort out what the data model is?