Papers
arxiv:2503.19901

TokenHSI: Unified Synthesis of Physical Human-Scene Interactions through Task Tokenization

Published on Mar 25
· Submitted by lianganimation on Apr 1
Authors:
,
Bo Dai ,
,

Abstract

Synthesizing diverse and physically plausible Human-Scene Interactions (HSI) is pivotal for both computer animation and embodied AI. Despite encouraging progress, current methods mainly focus on developing separate controllers, each specialized for a specific interaction task. This significantly hinders the ability to tackle a wide variety of challenging HSI tasks that require the integration of multiple skills, e.g., sitting down while carrying an object. To address this issue, we present TokenHSI, a single, unified transformer-based policy capable of multi-skill unification and flexible adaptation. The key insight is to model the humanoid proprioception as a separate shared token and combine it with distinct task tokens via a masking mechanism. Such a unified policy enables effective knowledge sharing across skills, thereby facilitating the multi-task training. Moreover, our policy architecture supports variable length inputs, enabling flexible adaptation of learned skills to new scenarios. By training additional task tokenizers, we can not only modify the geometries of interaction targets but also coordinate multiple skills to address complex tasks. The experiments demonstrate that our approach can significantly improve versatility, adaptability, and extensibility in various HSI tasks. Website: https://liangpan99.github.io/TokenHSI/

Community

Paper author Paper submitter

teaser.png

Introducing TokenHSI, a unified model that enables physics-based characters to perform diverse human-scene interaction tasks. It excels at seamlessly unifying multiple foundational HSI skills within a single transformer network and flexibly adapting learned skills to challenging new tasks, including skill composition, object/terrain shape variation, and long-horizon task completion.

This work has been accepted by CVPR 2025. We will release the codebase and all checkpoints very soon!

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2503.19901 in a Space README.md to link it from this page.

Collections including this paper 1