SentenceTransformer
This is a sentence-transformers model trained on the parquet dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- parquet
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pankajrajdeo/Bioformer-8L-UMLS-Pubmed_PMC-Forward_TCE-Epoch-2-MSMARCO-Epoch-1")
# Run inference
sentences = [
'does the columbus zoo sell beer',
'No glass and/or alcohol are permitted at the Columbus Zoo. This means that they do not sell alcoholic beverages.',
'Eviction law allows landlords to still ask you to move out, but you must be afforded some extra protections. First, for eviction notices without cause, the landlord must give you a longer period of notice to vacate, generally 30 or 60 days. This lengthened time period is designed to allow you to find another place to live.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
parquet
- Dataset: parquet
- Size: 39,780,704 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 9.85 tokens
- max: 38 tokens
- min: 15 tokens
- mean: 87.54 tokens
- max: 246 tokens
- Samples:
anchor positive is a little caffeine ok during pregnancy
We donât know a lot about the effects of caffeine during pregnancy on you and your baby. So itâs best to limit the amount you get each day. If youâre pregnant, limit caffeine to 200 milligrams each day. This is about the amount in 1½ 8-ounce cups of coffee or one 12-ounce cup of coffee.
what fruit is native to australia
Passiflora herbertiana. A rare passion fruit native to Australia. Fruits are green-skinned, white fleshed, with an unknown edible rating. Some sources list the fruit as edible, sweet and tasty, while others list the fruits as being bitter and inedible.assiflora herbertiana. A rare passion fruit native to Australia. Fruits are green-skinned, white fleshed, with an unknown edible rating. Some sources list the fruit as edible, sweet and tasty, while others list the fruits as being bitter and inedible.
how large is the canadian military
The Canadian Armed Forces. 1 The first large-scale Canadian peacekeeping mission started in Egypt on November 24, 1956. 2 There are approximately 65,000 Regular Force and 25,000 reservist members in the Canadian military. 3 In Canada, August 9 is designated as National Peacekeepersâ Day.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
parquet
- Dataset: parquet
- Size: 39,780,704 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 9.97 tokens
- max: 28 tokens
- min: 28 tokens
- mean: 85.19 tokens
- max: 228 tokens
- Samples:
anchor positive chemical weathering definition
Chemical weathering is the process where rocks and minerals, which originally formed deep underground at much higher temperatures and pressures, gradually transform into different chemical compounds once they are exposed to air and water at the surface.
what is the difference between breathe and breath
⢠The word breath is used as noun. ⢠On the other hand, the word breathe is used as verb. This is the main difference between the two words. ⢠The word breath is used in the sense of âair taken in and out during breathingâ. ⢠On the other hand, the word breathe is used in the sense of âtake air into the lungs and then let it outâ. ⢠The word breathe is sometimes used with the expression âhis/her lastâ, and it gives the meaning of âdie.â This is used for both breath and breathe. His last breath, breathed her last.
what is natural neck tightening
Use Sunscreen: One of the best, and a natural method for tightening skin includes applying sunscreen on the face and neck area. This will help to protect against UV rays that can be harmful and help to prevent the premature aging of your skin.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 1max_steps
: 295247log_level
: infofp16
: Truedataloader_num_workers
: 16load_best_model_at_end
: Trueresume_from_checkpoint
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: 295247lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: infolog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 16dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Truehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.7512 | - |
0.0034 | 1000 | 0.3943 | - |
0.0068 | 2000 | 0.3161 | - |
0.0102 | 3000 | 0.2452 | - |
0.0135 | 4000 | 0.2214 | - |
0.0169 | 5000 | 0.2056 | - |
0.0203 | 6000 | 0.2048 | - |
0.0237 | 7000 | 0.1895 | - |
0.0271 | 8000 | 0.1971 | - |
0.0305 | 9000 | 0.1915 | - |
0.0339 | 10000 | 0.1578 | - |
0.0373 | 11000 | 0.1808 | - |
0.0406 | 12000 | 0.1621 | - |
0.0440 | 13000 | 0.1515 | - |
0.0474 | 14000 | 0.1511 | - |
0.0508 | 15000 | 0.147 | - |
0.0542 | 16000 | 0.1498 | - |
0.0576 | 17000 | 0.1472 | - |
0.0610 | 18000 | 0.1379 | - |
0.0644 | 19000 | 0.1339 | - |
0.0677 | 20000 | 0.1275 | - |
0.0711 | 21000 | 0.1351 | - |
0.0745 | 22000 | 0.1289 | - |
0.0779 | 23000 | 0.1241 | - |
0.0813 | 24000 | 0.1394 | - |
0.0847 | 25000 | 0.1339 | - |
0.0881 | 26000 | 0.1266 | - |
0.0914 | 27000 | 0.1067 | - |
0.0948 | 28000 | 0.1072 | - |
0.0982 | 29000 | 0.1184 | - |
0.1016 | 30000 | 0.1162 | - |
0.1050 | 31000 | 0.1077 | - |
0.1084 | 32000 | 0.1036 | - |
0.1118 | 33000 | 0.1227 | - |
0.1152 | 34000 | 0.1088 | - |
0.1185 | 35000 | 0.108 | - |
0.1219 | 36000 | 0.1145 | - |
0.1253 | 37000 | 0.0976 | - |
0.1287 | 38000 | 0.0941 | - |
0.1321 | 39000 | 0.102 | - |
0.1355 | 40000 | 0.0998 | - |
0.1389 | 41000 | 0.1033 | - |
0.1423 | 42000 | 0.0965 | - |
0.1456 | 43000 | 0.0968 | - |
0.1490 | 44000 | 0.0936 | - |
0.1524 | 45000 | 0.0809 | - |
0.1558 | 46000 | 0.0937 | - |
0.1592 | 47000 | 0.0879 | - |
0.1626 | 48000 | 0.0889 | - |
0.1660 | 49000 | 0.0684 | - |
0.1693 | 50000 | 0.0949 | - |
0.1727 | 51000 | 0.0861 | - |
0.1761 | 52000 | 0.0886 | - |
0.1795 | 53000 | 0.0778 | - |
0.1829 | 54000 | 0.0958 | - |
0.1863 | 55000 | 0.0791 | - |
0.1897 | 56000 | 0.0872 | - |
0.1931 | 57000 | 0.0768 | - |
0.1964 | 58000 | 0.0846 | - |
0.1998 | 59000 | 0.0894 | - |
0.2032 | 60000 | 0.0825 | - |
0.2066 | 61000 | 0.0779 | - |
0.2100 | 62000 | 0.0819 | - |
0.2134 | 63000 | 0.0797 | - |
0.2168 | 64000 | 0.0635 | - |
0.2202 | 65000 | 0.0896 | - |
0.2235 | 66000 | 0.0816 | - |
0.2269 | 67000 | 0.0782 | - |
0.2303 | 68000 | 0.0766 | - |
0.2337 | 69000 | 0.0879 | - |
0.2371 | 70000 | 0.0794 | - |
0.2405 | 71000 | 0.0775 | - |
0.2439 | 72000 | 0.0753 | - |
0.2472 | 73000 | 0.0719 | - |
0.2506 | 74000 | 0.0657 | - |
0.2540 | 75000 | 0.0726 | - |
0.2574 | 76000 | 0.0764 | - |
0.2608 | 77000 | 0.069 | - |
0.2642 | 78000 | 0.0742 | - |
0.2676 | 79000 | 0.0621 | - |
0.2710 | 80000 | 0.0606 | - |
0.2743 | 81000 | 0.0648 | - |
0.2777 | 82000 | 0.0612 | - |
0.2811 | 83000 | 0.0615 | - |
0.2845 | 84000 | 0.0609 | - |
0.2879 | 85000 | 0.0596 | - |
0.2913 | 86000 | 0.065 | - |
0.2947 | 87000 | 0.0556 | - |
0.2981 | 88000 | 0.0715 | - |
0.3014 | 89000 | 0.0643 | - |
0.3048 | 90000 | 0.061 | - |
0.3082 | 91000 | 0.068 | - |
0.3116 | 92000 | 0.0613 | - |
0.3150 | 93000 | 0.0593 | - |
0.3184 | 94000 | 0.0661 | - |
0.3218 | 95000 | 0.0649 | - |
0.3252 | 96000 | 0.0663 | - |
0.3285 | 97000 | 0.0574 | - |
0.3319 | 98000 | 0.0659 | - |
0.3353 | 99000 | 0.0574 | - |
0.3387 | 100000 | 0.061 | - |
0.3421 | 101000 | 0.0605 | - |
0.3455 | 102000 | 0.0651 | - |
0.3489 | 103000 | 0.0561 | - |
0.3522 | 104000 | 0.0548 | - |
0.3556 | 105000 | 0.0598 | - |
0.3590 | 106000 | 0.0634 | - |
0.3624 | 107000 | 0.0664 | - |
0.3658 | 108000 | 0.0609 | - |
0.3692 | 109000 | 0.0595 | - |
0.3726 | 110000 | 0.0537 | - |
0.3760 | 111000 | 0.0563 | - |
0.3793 | 112000 | 0.057 | - |
0.3827 | 113000 | 0.0592 | - |
0.3861 | 114000 | 0.0513 | - |
0.3895 | 115000 | 0.0581 | - |
0.3929 | 116000 | 0.0513 | - |
0.3963 | 117000 | 0.0601 | - |
0.3997 | 118000 | 0.0609 | - |
0.4031 | 119000 | 0.0603 | - |
0.4064 | 120000 | 0.0557 | - |
0.4098 | 121000 | 0.0525 | - |
0.4132 | 122000 | 0.0534 | - |
0.4166 | 123000 | 0.0592 | - |
0.4200 | 124000 | 0.0582 | - |
0.4234 | 125000 | 0.0548 | - |
0.4268 | 126000 | 0.0505 | - |
0.4301 | 127000 | 0.055 | - |
0.4335 | 128000 | 0.0599 | - |
0.4369 | 129000 | 0.0567 | - |
0.4403 | 130000 | 0.0496 | - |
0.4437 | 131000 | 0.0535 | - |
0.4471 | 132000 | 0.0453 | - |
0.4505 | 133000 | 0.0524 | - |
0.4539 | 134000 | 0.046 | - |
0.4572 | 135000 | 0.0531 | - |
0.4606 | 136000 | 0.0515 | - |
0.4640 | 137000 | 0.0542 | - |
0.4674 | 138000 | 0.0596 | - |
0.4708 | 139000 | 0.0473 | - |
0.4742 | 140000 | 0.0523 | - |
0.4776 | 141000 | 0.0527 | - |
0.4810 | 142000 | 0.0557 | - |
0.4843 | 143000 | 0.0499 | - |
0.4877 | 144000 | 0.0451 | - |
0.4911 | 145000 | 0.0501 | - |
0.4945 | 146000 | 0.0505 | - |
0.4979 | 147000 | 0.0561 | - |
0.5013 | 148000 | 0.0512 | - |
0.5047 | 149000 | 0.0497 | - |
0.5080 | 150000 | 0.0497 | - |
0.5114 | 151000 | 0.0552 | - |
0.5148 | 152000 | 0.0531 | - |
0.5182 | 153000 | 0.049 | - |
0.5216 | 154000 | 0.0431 | - |
0.5250 | 155000 | 0.0483 | - |
0.5284 | 156000 | 0.0469 | - |
0.5318 | 157000 | 0.0514 | - |
0.5351 | 158000 | 0.0447 | - |
0.5385 | 159000 | 0.0474 | - |
0.5419 | 160000 | 0.0447 | - |
0.5453 | 161000 | 0.0493 | - |
0.5487 | 162000 | 0.046 | - |
0.5521 | 163000 | 0.0434 | - |
0.5555 | 164000 | 0.0469 | - |
0.5589 | 165000 | 0.0464 | - |
0.5622 | 166000 | 0.0462 | - |
0.5656 | 167000 | 0.0537 | - |
0.5690 | 168000 | 0.0455 | - |
0.5724 | 169000 | 0.0423 | - |
0.5758 | 170000 | 0.0419 | - |
0.5792 | 171000 | 0.0463 | - |
0.5826 | 172000 | 0.0505 | - |
0.5859 | 173000 | 0.0461 | - |
0.5893 | 174000 | 0.0417 | - |
0.5927 | 175000 | 0.0469 | - |
0.5961 | 176000 | 0.0443 | - |
0.5995 | 177000 | 0.0486 | - |
0.6029 | 178000 | 0.0478 | - |
0.6063 | 179000 | 0.0421 | - |
0.6097 | 180000 | 0.0555 | - |
0.6130 | 181000 | 0.0443 | - |
0.6164 | 182000 | 0.0483 | - |
0.6198 | 183000 | 0.0409 | - |
0.6232 | 184000 | 0.0426 | - |
0.6266 | 185000 | 0.0507 | - |
0.6300 | 186000 | 0.0441 | - |
0.6334 | 187000 | 0.0463 | - |
0.6368 | 188000 | 0.0445 | - |
0.6401 | 189000 | 0.0503 | - |
0.6435 | 190000 | 0.0462 | - |
0.6469 | 191000 | 0.0427 | - |
0.6503 | 192000 | 0.0362 | - |
0.6537 | 193000 | 0.0456 | - |
0.6571 | 194000 | 0.0456 | - |
0.6605 | 195000 | 0.0496 | - |
0.6638 | 196000 | 0.0403 | - |
0.6672 | 197000 | 0.0463 | - |
0.6706 | 198000 | 0.0459 | - |
0.6740 | 199000 | 0.0434 | - |
0.6774 | 200000 | 0.0431 | - |
0.6808 | 201000 | 0.0438 | - |
0.6842 | 202000 | 0.0394 | - |
0.6876 | 203000 | 0.0485 | - |
0.6909 | 204000 | 0.0404 | - |
0.6943 | 205000 | 0.0421 | - |
0.6977 | 206000 | 0.0492 | - |
0.7011 | 207000 | 0.0434 | - |
0.7045 | 208000 | 0.0386 | - |
0.7079 | 209000 | 0.036 | - |
0.7113 | 210000 | 0.0426 | - |
0.7147 | 211000 | 0.0428 | - |
0.7180 | 212000 | 0.0452 | - |
0.7214 | 213000 | 0.0414 | - |
0.7248 | 214000 | 0.0423 | - |
0.7282 | 215000 | 0.0364 | - |
0.7316 | 216000 | 0.0373 | - |
0.7350 | 217000 | 0.0394 | - |
0.7384 | 218000 | 0.0388 | - |
0.7417 | 219000 | 0.0428 | - |
0.7451 | 220000 | 0.04 | - |
0.7485 | 221000 | 0.0401 | - |
0.7519 | 222000 | 0.0396 | - |
0.7553 | 223000 | 0.0416 | - |
0.7587 | 224000 | 0.0364 | - |
0.7621 | 225000 | 0.0414 | - |
0.7655 | 226000 | 0.0455 | - |
0.7688 | 227000 | 0.0345 | - |
0.7722 | 228000 | 0.0437 | - |
0.7756 | 229000 | 0.0434 | - |
0.7790 | 230000 | 0.035 | - |
0.7824 | 231000 | 0.0422 | - |
0.7858 | 232000 | 0.0391 | - |
0.7892 | 233000 | 0.041 | - |
0.7926 | 234000 | 0.0427 | - |
0.7959 | 235000 | 0.0401 | - |
0.7993 | 236000 | 0.0402 | - |
0.8027 | 237000 | 0.0411 | - |
0.8061 | 238000 | 0.0372 | - |
0.8095 | 239000 | 0.0385 | - |
0.8129 | 240000 | 0.0398 | - |
0.8163 | 241000 | 0.036 | - |
0.8196 | 242000 | 0.0389 | - |
0.8230 | 243000 | 0.044 | - |
0.8264 | 244000 | 0.0397 | - |
0.8298 | 245000 | 0.0426 | - |
0.8332 | 246000 | 0.0379 | - |
0.8366 | 247000 | 0.0356 | - |
0.8400 | 248000 | 0.0388 | - |
0.8434 | 249000 | 0.0373 | - |
0.8467 | 250000 | 0.0402 | - |
0.8501 | 251000 | 0.0404 | - |
0.8535 | 252000 | 0.0427 | - |
0.8569 | 253000 | 0.0334 | - |
0.8603 | 254000 | 0.035 | - |
0.8637 | 255000 | 0.0405 | - |
0.8671 | 256000 | 0.0336 | - |
0.8705 | 257000 | 0.0443 | - |
0.8738 | 258000 | 0.0386 | - |
0.8772 | 259000 | 0.0419 | - |
0.8806 | 260000 | 0.0352 | - |
0.8840 | 261000 | 0.0434 | - |
0.8874 | 262000 | 0.0365 | - |
0.8908 | 263000 | 0.0388 | - |
0.8942 | 264000 | 0.0416 | - |
0.8976 | 265000 | 0.0368 | - |
0.9009 | 266000 | 0.0389 | - |
0.9043 | 267000 | 0.0382 | - |
0.9077 | 268000 | 0.036 | - |
0.9111 | 269000 | 0.0346 | - |
0.9145 | 270000 | 0.0371 | - |
0.9179 | 271000 | 0.0413 | - |
0.9213 | 272000 | 0.0399 | - |
0.9246 | 273000 | 0.0357 | - |
0.9280 | 274000 | 0.0373 | - |
0.9314 | 275000 | 0.0369 | - |
0.9348 | 276000 | 0.0387 | - |
0.9382 | 277000 | 0.0338 | - |
0.9416 | 278000 | 0.0365 | - |
0.9450 | 279000 | 0.0316 | - |
0.9484 | 280000 | 0.0362 | - |
0.9517 | 281000 | 0.0378 | - |
0.9551 | 282000 | 0.0379 | - |
0.9585 | 283000 | 0.0396 | - |
0.9619 | 284000 | 0.0379 | - |
0.9653 | 285000 | 0.0351 | - |
0.9687 | 286000 | 0.0357 | - |
0.9721 | 287000 | 0.0413 | - |
0.9755 | 288000 | 0.0341 | - |
0.9788 | 289000 | 0.0375 | - |
0.9822 | 290000 | 0.0383 | - |
0.9856 | 291000 | 0.0376 | - |
0.9890 | 292000 | 0.0351 | - |
0.9924 | 293000 | 0.0419 | - |
0.9958 | 294000 | 0.0373 | - |
0.9992 | 295000 | 0.039 | - |
1.0000 | 295247 | - | 0.0001 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support