YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Llama-3.1-8B-Table-Finetuned

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on table-based question answering tasks.

Model Details

  • Base Model: meta-llama/Meta-Llama-3.1-8B-Instruct
  • Fine-tuning Method: QLoRA (4-bit Quantized Low-Rank Adaptation)
  • Context Length: 16K tokens
  • Training Data: Table-based question answering dataset

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("pandoradox/llama-3.1-8B-table-finetuned_1.2k")
tokenizer = AutoTokenizer.from_pretrained("pandoradox/llama-3.1-8B-table-finetuned_1.2k")

# Format your input with a table
prompt = '''
<|system|>
You are an expert at analyzing tables and answering questions about them.
<|end|>
<|user|>
Based on the following table:

Table title: Example Table

Headers: Name, Age, City

Row 1: John, 30, New York
Row 2: Jane, 25, Boston
Row 3: Bob, 35, Chicago

Question: Who is the oldest person in the table?
<|end|>
<|assistant|>
'''

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=2048)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Limitations

  • The model may struggle with extremely complex tables or ambiguous questions
  • Performance may vary based on how tables are formatted in the input prompt
Downloads last month
10
Safetensors
Model size
8.03B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support