pakawadeep's picture
Update README.md
519292e verified
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - generated_from_keras_callback
model-index:
  - name: pakawadeep/mt5-small-finetuned-ctfl
    results: []
language:
  - th

pakawadeep/mt5-small-finetuned-ctfl

This model is a fine-tuned version of google/mt5-small on CTFL-GEC dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9386
  • Validation Loss: 1.1006
  • Train Rouge1: 8.2390
  • Train Rouge2: 1.3861
  • Train Rougel: 8.5219
  • Train Rougelsum: 8.2744
  • Train Gen Len: 11.9505
  • Epoch: 27

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Rouge1 Train Rouge2 Train Rougel Train Rougelsum Train Gen Len Epoch
2.0267 1.4685 8.4866 2.1287 8.6987 8.4158 11.8317 0
1.8791 1.4054 8.4866 2.1287 8.6987 8.4158 11.7772 1
1.7619 1.4034 8.4866 2.1287 8.6987 8.4158 11.8069 2
1.6707 1.3687 8.9463 2.1287 9.1938 8.9816 11.8762 3
1.5788 1.3420 8.4866 2.1287 8.6987 8.4866 11.9059 4
1.5039 1.3403 8.4866 2.1287 8.6987 8.4866 11.9158 5
1.4301 1.3176 8.4866 2.1287 8.6987 8.4866 11.9307 6
1.3983 1.3101 8.6634 2.3102 8.7871 8.6634 11.9257 7
1.3550 1.2941 8.7694 2.2772 8.9816 8.7694 11.9356 8
1.3139 1.2659 8.7694 2.2772 8.9816 8.7694 11.9257 9
1.2710 1.2536 8.7694 2.2772 8.9816 8.7694 11.9257 10
1.2479 1.2394 8.7694 2.2772 8.9816 8.7694 11.9257 11
1.2359 1.2252 8.7694 2.2772 8.9816 8.7694 11.9406 12
1.2031 1.2193 8.7694 2.2772 8.9816 8.7694 11.9307 13
1.1813 1.1963 8.7694 2.2772 8.9816 8.7694 11.9455 14
1.1556 1.1897 8.7694 2.2772 8.9816 8.7694 11.9455 15
1.1242 1.1786 8.7694 2.2772 8.9816 8.7694 11.9406 16
1.1060 1.1575 8.7694 2.2772 8.9816 8.7694 11.9554 17
1.0808 1.1620 8.7694 2.2772 8.9816 8.7694 11.9505 18
1.0620 1.1564 8.7694 2.2772 8.9816 8.7694 11.9554 19
1.0489 1.1491 8.2744 1.8812 8.4866 8.2744 11.9505 20
1.0313 1.1292 8.2744 1.8812 8.4866 8.2744 11.9554 21
1.0104 1.1294 8.2744 1.8812 8.4866 8.2744 11.9802 22
0.9917 1.1190 8.4866 1.8812 8.7341 8.5219 11.9505 23
0.9642 1.1348 8.2390 1.3861 8.5219 8.2744 11.9406 24
0.9629 1.1197 8.2390 1.3861 8.5219 8.2744 11.9406 25
0.9512 1.1060 8.2390 1.3861 8.5219 8.2744 11.9505 26
0.9386 1.1006 8.2390 1.3861 8.5219 8.2744 11.9505 27

Framework versions

  • Transformers 4.38.2
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2