pahri's picture
Add SetFit ABSA model
27fc639 verified
metadata
library_name: setfit
tags:
  - setfit
  - absa
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      nihh, buat bumbu masih kurang berani:Kemaren kebetulan makan babat sama
      nyobain cumi, buat tekstur babatnya itu engga alot sama sekali dan tidak
      amis, sedangkan buat cumi utuh lumayan gede juga tekstur kenyel kenyelnya
      dapet dan mateng juga sampe ke dalem. Tapi ada tapinyaa nihh, buat bumbu
      masih kurang berani dan kurang meresap.
  - text: >-
      servicenya😊..Menunya variatif, delicious:Baru pertama kali coba baby
      dutch pancake..Overall sukaa dengan food, place & servicenya😊..Menunya
      variatif, delicious, penyajian cepat & pelayanan sangat baik.
  - text: >-
      enak, tapi porsinya kecil untuk harganya:Makanannya enak, tapi porsinya
      kecil untuk harganya. Suasana bagus, tetapi layanannya lambat.
  - text: >-
      specialist itu. Varian minumnya juga cuma sedikit:Menunya gak banyak,
      pancake dan rosti aja. Karena specialist itu. Varian minumnya juga cuma
      sedikit.
  - text: >-
      enak. Favorit selada air krispi dan ayam bakar:Warung Sunda murah meriah
      dan makanannya enak. Favorit selada air krispi dan ayam bakar. Bakwan dan
      perkedelnya juga enak. Paru gorengnya lembut. Tak lengkap kalau kebandung.
      Kalau tidak makan siang disini
pipeline_tag: text-classification
inference: false

SetFit Polarity Model

This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

  1. Use a spaCy model to select possible aspect span candidates.
  2. Use a SetFit model to filter these possible aspect span candidates.
  3. Use this SetFit model to classify the filtered aspect span candidates.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
negative
  • 'tempatnya, tp pilihan makanannya terbatas, kalo:instagramable tempatnya, tp pilihan makanannya terbatas, kalo untuk nongkrong ngemil sih enak tempatnya,tp kl yg mau makan berart krg bnyk variasi menunya'
  • 'cuma menurut saya overpriced sih , untuk:untuk makanan rasa enak cuma menurut saya overpriced sih , untuk pancake tipis gtu dibandrol harga 65rb dengan topping yg sedikit , cuma 2 blueberry dan 2 raspberry dan pistachionya jg sedikit.'
  • 'Menunggu 50menit dan pesanan tak kunjung datang:Gak worthed. Menunggu 50menit dan pesanan tak kunjung datang. Gak lagi deh ke tempat ini. Keterlaluan servisnya.'
positive
  • 'ngemil sih enak tempatnya,tp kl:instagramable tempatnya, tp pilihan makanannya terbatas, kalo untuk nongkrong ngemil sih enak tempatnya,tp kl yg mau makan berart krg bnyk variasi menunya'
  • 'Harganya juga masih terjangkau:Harganya juga masih terjangkau'
  • 'nyambung, dan sambal leunca-nya enak beutullll....:Rasa ayam goreng/ati-ampela goreng gurih asinnya pas, sayur asem yang isinya banyak dan ras asam-manisnya nyambung, dan sambal leunca-nya enak beutullll.... Pakai petai dan tempe/tahu lebih sempurna.'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "pahri/setfit-indo-restomix-aspect",
    "pahri/setfit-indo-restomix-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 28.3207 90
Label Training Sample Count
konflik 0
negatif 0
netral 0
positif 0

Training Hyperparameters

  • batch_size: (6, 6)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: True
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.3326 -

Framework Versions

  • Python: 3.10.13
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • spaCy: 3.7.4
  • Transformers: 4.36.2
  • PyTorch: 2.1.2
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}