metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
nihh, buat bumbu masih kurang berani:Kemaren kebetulan makan babat sama
nyobain cumi, buat tekstur babatnya itu engga alot sama sekali dan tidak
amis, sedangkan buat cumi utuh lumayan gede juga tekstur kenyel kenyelnya
dapet dan mateng juga sampe ke dalem. Tapi ada tapinyaa nihh, buat bumbu
masih kurang berani dan kurang meresap.
- text: >-
servicenya😊..Menunya variatif, delicious:Baru pertama kali coba baby
dutch pancake..Overall sukaa dengan food, place & servicenya😊..Menunya
variatif, delicious, penyajian cepat & pelayanan sangat baik.
- text: >-
enak, tapi porsinya kecil untuk harganya:Makanannya enak, tapi porsinya
kecil untuk harganya. Suasana bagus, tetapi layanannya lambat.
- text: >-
specialist itu. Varian minumnya juga cuma sedikit:Menunya gak banyak,
pancake dan rosti aja. Karena specialist itu. Varian minumnya juga cuma
sedikit.
- text: >-
enak. Favorit selada air krispi dan ayam bakar:Warung Sunda murah meriah
dan makanannya enak. Favorit selada air krispi dan ayam bakar. Bakwan dan
perkedelnya juga enak. Paru gorengnya lembut. Tak lengkap kalau kebandung.
Kalau tidak makan siang disini
pipeline_tag: text-classification
inference: false
SetFit Polarity Model
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: pahri/setfit-indo-restomix-aspect
- SetFitABSA Polarity Model: pahri/setfit-indo-restomix-polarity
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"pahri/setfit-indo-restomix-aspect",
"pahri/setfit-indo-restomix-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 7 | 28.3207 | 90 |
Label | Training Sample Count |
---|---|
konflik | 0 |
negatif | 0 |
netral | 0 |
positif | 0 |
Training Hyperparameters
- batch_size: (6, 6)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3326 | - |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- spaCy: 3.7.4
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}