layoutlm-sroie_synthetic_runpod

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0653
  • Ate: {'precision': 0.9176470588235294, 'recall': 0.975, 'f1': 0.9454545454545454, 'number': 80}
  • Ddress: {'precision': 0.8518518518518519, 'recall': 0.8625, 'f1': 0.8571428571428572, 'number': 80}
  • Ompany: {'precision': 0.8095238095238095, 'recall': 0.85, 'f1': 0.8292682926829269, 'number': 80}
  • Otal: {'precision': 0.4666666666666667, 'recall': 0.2625, 'f1': 0.336, 'number': 80}
  • Overall Precision: 0.8
  • Overall Recall: 0.7375
  • Overall F1: 0.7675
  • Overall Accuracy: 0.9825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ate Ddress Ompany Otal Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4865 1.0 33 0.1149 {'precision': 0.6702127659574468, 'recall': 0.7875, 'f1': 0.7241379310344828, 'number': 80} {'precision': 0.7926829268292683, 'recall': 0.8125, 'f1': 0.8024691358024691, 'number': 80} {'precision': 0.6551724137931034, 'recall': 0.7125, 'f1': 0.6826347305389221, 'number': 80} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 80} 0.7034 0.5781 0.6346 0.9741
0.0712 2.0 66 0.0681 {'precision': 0.9069767441860465, 'recall': 0.975, 'f1': 0.9397590361445783, 'number': 80} {'precision': 0.8625, 'recall': 0.8625, 'f1': 0.8625, 'number': 80} {'precision': 0.7840909090909091, 'recall': 0.8625, 'f1': 0.8214285714285715, 'number': 80} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 80} 0.8504 0.675 0.7526 0.9829
0.0452 3.0 99 0.0623 {'precision': 0.9176470588235294, 'recall': 0.975, 'f1': 0.9454545454545454, 'number': 80} {'precision': 0.8625, 'recall': 0.8625, 'f1': 0.8625, 'number': 80} {'precision': 0.8072289156626506, 'recall': 0.8375, 'f1': 0.8220858895705521, 'number': 80} {'precision': 0.25, 'recall': 0.0375, 'f1': 0.06521739130434782, 'number': 80} 0.8346 0.6781 0.7483 0.9826
0.0371 4.0 132 0.0653 {'precision': 0.9176470588235294, 'recall': 0.975, 'f1': 0.9454545454545454, 'number': 80} {'precision': 0.8518518518518519, 'recall': 0.8625, 'f1': 0.8571428571428572, 'number': 80} {'precision': 0.8095238095238095, 'recall': 0.85, 'f1': 0.8292682926829269, 'number': 80} {'precision': 0.4666666666666667, 'recall': 0.2625, 'f1': 0.336, 'number': 80} 0.8 0.7375 0.7675 0.9825

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
68
Safetensors
Model size
113M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for pabloma09/layoutlm-sroie_synthetic_runpod

Finetuned
(169)
this model