layoutlm-sroie_syntheticXsroie

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0420
  • Ate: {'precision': 0.935064935064935, 'recall': 0.96, 'f1': 0.9473684210526316, 'number': 150}
  • Ddress: {'precision': 0.9, 'recall': 0.9060402684563759, 'f1': 0.903010033444816, 'number': 149}
  • Ompany: {'precision': 0.8544303797468354, 'recall': 0.9, 'f1': 0.8766233766233766, 'number': 150}
  • Otal: {'precision': 0.48, 'recall': 0.56, 'f1': 0.5169230769230769, 'number': 150}
  • Overall Precision: 0.7818
  • Overall Recall: 0.8314
  • Overall F1: 0.8058
  • Overall Accuracy: 0.9857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Ate Ddress Ompany Otal Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3549 1.0 60 0.0863 {'precision': 0.8630952380952381, 'recall': 0.9666666666666667, 'f1': 0.9119496855345911, 'number': 150} {'precision': 0.7639751552795031, 'recall': 0.825503355704698, 'f1': 0.7935483870967742, 'number': 149} {'precision': 0.7391304347826086, 'recall': 0.7933333333333333, 'f1': 0.7652733118971061, 'number': 150} {'precision': 0.2777777777777778, 'recall': 0.16666666666666666, 'f1': 0.20833333333333334, 'number': 150} 0.7103 0.6878 0.6989 0.9771
0.049 2.0 120 0.0530 {'precision': 0.9050632911392406, 'recall': 0.9533333333333334, 'f1': 0.9285714285714286, 'number': 150} {'precision': 0.8993288590604027, 'recall': 0.8993288590604027, 'f1': 0.8993288590604027, 'number': 149} {'precision': 0.8214285714285714, 'recall': 0.7666666666666667, 'f1': 0.793103448275862, 'number': 150} {'precision': 0.43617021276595747, 'recall': 0.2733333333333333, 'f1': 0.3360655737704918, 'number': 150} 0.8004 0.7229 0.7596 0.9808
0.0313 3.0 180 0.0438 {'precision': 0.9285714285714286, 'recall': 0.9533333333333334, 'f1': 0.9407894736842105, 'number': 150} {'precision': 0.8807947019867549, 'recall': 0.8926174496644296, 'f1': 0.8866666666666666, 'number': 149} {'precision': 0.8481012658227848, 'recall': 0.8933333333333333, 'f1': 0.8701298701298702, 'number': 150} {'precision': 0.4659090909090909, 'recall': 0.5466666666666666, 'f1': 0.5030674846625767, 'number': 150} 0.7700 0.8214 0.7948 0.9851
0.0248 4.0 240 0.0420 {'precision': 0.935064935064935, 'recall': 0.96, 'f1': 0.9473684210526316, 'number': 150} {'precision': 0.9, 'recall': 0.9060402684563759, 'f1': 0.903010033444816, 'number': 149} {'precision': 0.8544303797468354, 'recall': 0.9, 'f1': 0.8766233766233766, 'number': 150} {'precision': 0.48, 'recall': 0.56, 'f1': 0.5169230769230769, 'number': 150} 0.7818 0.8314 0.8058 0.9857

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.1.0+cu118
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
111
Safetensors
Model size
113M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for pabloma09/layoutlm-sroie_syntheticXsroie

Finetuned
(169)
this model