layoutlm-sroie_syntheticXsroie
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0420
- Ate: {'precision': 0.935064935064935, 'recall': 0.96, 'f1': 0.9473684210526316, 'number': 150}
- Ddress: {'precision': 0.9, 'recall': 0.9060402684563759, 'f1': 0.903010033444816, 'number': 149}
- Ompany: {'precision': 0.8544303797468354, 'recall': 0.9, 'f1': 0.8766233766233766, 'number': 150}
- Otal: {'precision': 0.48, 'recall': 0.56, 'f1': 0.5169230769230769, 'number': 150}
- Overall Precision: 0.7818
- Overall Recall: 0.8314
- Overall F1: 0.8058
- Overall Accuracy: 0.9857
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Ate | Ddress | Ompany | Otal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3549 | 1.0 | 60 | 0.0863 | {'precision': 0.8630952380952381, 'recall': 0.9666666666666667, 'f1': 0.9119496855345911, 'number': 150} | {'precision': 0.7639751552795031, 'recall': 0.825503355704698, 'f1': 0.7935483870967742, 'number': 149} | {'precision': 0.7391304347826086, 'recall': 0.7933333333333333, 'f1': 0.7652733118971061, 'number': 150} | {'precision': 0.2777777777777778, 'recall': 0.16666666666666666, 'f1': 0.20833333333333334, 'number': 150} | 0.7103 | 0.6878 | 0.6989 | 0.9771 |
0.049 | 2.0 | 120 | 0.0530 | {'precision': 0.9050632911392406, 'recall': 0.9533333333333334, 'f1': 0.9285714285714286, 'number': 150} | {'precision': 0.8993288590604027, 'recall': 0.8993288590604027, 'f1': 0.8993288590604027, 'number': 149} | {'precision': 0.8214285714285714, 'recall': 0.7666666666666667, 'f1': 0.793103448275862, 'number': 150} | {'precision': 0.43617021276595747, 'recall': 0.2733333333333333, 'f1': 0.3360655737704918, 'number': 150} | 0.8004 | 0.7229 | 0.7596 | 0.9808 |
0.0313 | 3.0 | 180 | 0.0438 | {'precision': 0.9285714285714286, 'recall': 0.9533333333333334, 'f1': 0.9407894736842105, 'number': 150} | {'precision': 0.8807947019867549, 'recall': 0.8926174496644296, 'f1': 0.8866666666666666, 'number': 149} | {'precision': 0.8481012658227848, 'recall': 0.8933333333333333, 'f1': 0.8701298701298702, 'number': 150} | {'precision': 0.4659090909090909, 'recall': 0.5466666666666666, 'f1': 0.5030674846625767, 'number': 150} | 0.7700 | 0.8214 | 0.7948 | 0.9851 |
0.0248 | 4.0 | 240 | 0.0420 | {'precision': 0.935064935064935, 'recall': 0.96, 'f1': 0.9473684210526316, 'number': 150} | {'precision': 0.9, 'recall': 0.9060402684563759, 'f1': 0.903010033444816, 'number': 149} | {'precision': 0.8544303797468354, 'recall': 0.9, 'f1': 0.8766233766233766, 'number': 150} | {'precision': 0.48, 'recall': 0.56, 'f1': 0.5169230769230769, 'number': 150} | 0.7818 | 0.8314 | 0.8058 | 0.9857 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.1.0+cu118
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 111
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for pabloma09/layoutlm-sroie_syntheticXsroie
Base model
microsoft/layoutlm-base-uncased