layoutlm-sroie_synthetic
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1204
- Ate: {'precision': 0.7636363636363637, 'recall': 0.8571428571428571, 'f1': 0.8076923076923076, 'number': 49}
- Ddress: {'precision': 0.8653846153846154, 'recall': 0.9, 'f1': 0.8823529411764707, 'number': 50}
- Ompany: {'precision': 0.9230769230769231, 'recall': 0.96, 'f1': 0.9411764705882353, 'number': 50}
- Otal: {'precision': 0.9215686274509803, 'recall': 0.94, 'f1': 0.9306930693069307, 'number': 50}
- Overall Precision: 0.8667
- Overall Recall: 0.9146
- Overall F1: 0.8900
- Overall Accuracy: 0.9778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Ate | Ddress | Ompany | Otal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4783 | 1.0 | 43 | 0.1302 | {'precision': 0.72, 'recall': 0.7346938775510204, 'f1': 0.7272727272727272, 'number': 49} | {'precision': 0.8113207547169812, 'recall': 0.86, 'f1': 0.8349514563106797, 'number': 50} | {'precision': 0.9423076923076923, 'recall': 0.98, 'f1': 0.9607843137254902, 'number': 50} | {'precision': 0.7142857142857143, 'recall': 0.8, 'f1': 0.7547169811320756, 'number': 50} | 0.7962 | 0.8442 | 0.8195 | 0.9682 |
0.0285 | 2.0 | 86 | 0.1126 | {'precision': 0.75, 'recall': 0.8571428571428571, 'f1': 0.7999999999999999, 'number': 49} | {'precision': 0.7962962962962963, 'recall': 0.86, 'f1': 0.826923076923077, 'number': 50} | {'precision': 0.9230769230769231, 'recall': 0.96, 'f1': 0.9411764705882353, 'number': 50} | {'precision': 0.9215686274509803, 'recall': 0.94, 'f1': 0.9306930693069307, 'number': 50} | 0.8451 | 0.9045 | 0.8738 | 0.9764 |
0.0119 | 3.0 | 129 | 0.1177 | {'precision': 0.7962962962962963, 'recall': 0.8775510204081632, 'f1': 0.8349514563106796, 'number': 49} | {'precision': 0.8846153846153846, 'recall': 0.92, 'f1': 0.9019607843137256, 'number': 50} | {'precision': 0.9423076923076923, 'recall': 0.98, 'f1': 0.9607843137254902, 'number': 50} | {'precision': 0.9215686274509803, 'recall': 0.94, 'f1': 0.9306930693069307, 'number': 50} | 0.8852 | 0.9296 | 0.9069 | 0.9797 |
0.0078 | 4.0 | 172 | 0.1204 | {'precision': 0.7636363636363637, 'recall': 0.8571428571428571, 'f1': 0.8076923076923076, 'number': 49} | {'precision': 0.8653846153846154, 'recall': 0.9, 'f1': 0.8823529411764707, 'number': 50} | {'precision': 0.9230769230769231, 'recall': 0.96, 'f1': 0.9411764705882353, 'number': 50} | {'precision': 0.9215686274509803, 'recall': 0.94, 'f1': 0.9306930693069307, 'number': 50} | 0.8667 | 0.9146 | 0.8900 | 0.9778 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.1.0+cu118
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 205
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for pabloma09/layoutlm-sroie_synthetic
Base model
microsoft/layoutlm-base-uncased