reach-vb HF Staff commited on
Commit
c6b6c8b
·
verified ·
1 Parent(s): 00aca3a

Add Robotics tag and metadata

Browse files

Hi! I'm VB from Hugging Face. Congratulations on your model! I'm opening a quick PR to update the model card to add Robotics metadata.

This PR adds standard Robotics metadata and base model information:
- Added 'Robotics' to tags
- Set pipeline_tag to 'robotics'
- Added 'smolvla' as base_model

These changes help improve discoverability and provide better model lineage information.

Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: lerobot/smolvla_base
3
+ library_name: lerobot
4
+ license: apache-2.0
5
+ model_name: smolvla
6
+ pipeline_tag: robotics
7
+ tags:
8
+ - robotics
9
+ - smolvla
10
+ ---
11
+
12
+ # Model Card for my_smolvla1
13
+
14
+ <!-- Provide a quick summary of what the model is/does. -->
15
+
16
+ [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
17
+
18
+ This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
19
+ See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
20
+
21
+ ---
22
+
23
+ ## How to Get Started with the Model
24
+
25
+ For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
26
+ Below is the short version on how to train and run inference/eval:
27
+
28
+ ### Train from scratch
29
+
30
+ ```bash
31
+ python lerobot/scripts/train.py \
32
+ --dataset.repo_id=<user_or_org>/<dataset> \
33
+ --policy.type=act \
34
+ --output_dir=outputs/train/<desired_policy_repo_id> \
35
+ --job_name=lerobot_training \
36
+ --policy.device=cuda \
37
+ --policy.repo_id=<user_or_org>/<desired_policy_repo_id> \
38
+ --wandb.enable=true
39
+ ```
40
+
41
+ *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.*
42
+
43
+ ### Evaluate the policy
44
+
45
+ ```bash
46
+ python -m lerobot.record \
47
+ --robot.type=so100_follower \
48
+ --dataset.repo_id=<user_or_org>/eval_<dataset> \
49
+ --policy.path=<user_or_org>/<desired_policy_repo_id> \
50
+ --episodes=10
51
+ ```
52
+
53
+ Prefix the dataset repo with **eval_** and supply `--policy.path` pointing to a local or hub checkpoint.
54
+
55
+ ---