open/ acc

community

AI & ML interests

None defined yet.

Recent Activity

open-acc's activity

takarajordan 
posted an update 2 days ago
view post
Post
254
Cool to see the new model lightonai/Reason-ModernColBERT

Made with late interaction I'd love to recreate the dataset to see a proper apache 2.0 version!

burtenshaw 
posted an update 2 days ago
view post
Post
1245
MCP course is now LIVE! We just dropped quizzes, videos, and live streams to make it a fully interactive course:

🔗 join in now: mcp-course

- It’s still free!
- Video 1 walks you through onboarding to the course
- The first live session is next week!
- You can now get a certificate via exam app
- We improved and written material with interactive quizzes

If you’re studying MCP and want a live, interactive, visual, certified course, then join us on the hub!
clem 
posted an update 3 days ago
view post
Post
2556
Playing with Veo3 this morning. Share your prompt if you want me to create videos for you (bonus point if they funnily reference HF/open-source). These videos are "a cat on the moon rapping "I love Hugging Face""!
·
cfahlgren1 
posted an update 4 days ago
burtenshaw 
posted an update 8 days ago
view post
Post
2941
We're thrilled to announce the launch of our comprehensive Model Context Protocol (MCP) Course! This free program is designed to take learners from foundational understanding to practical application of MCP in AI.

Follow the course on the hub: mcp-course

In this course, you will:
📖 Study Model Context Protocol in theory, design, and practice.
🧑‍💻 Learn to use established MCP SDKs and frameworks.
💾 Share your projects and explore applications created by the community.
🏆 Participate in challenges and evaluate your MCP implementations.
🎓 Earn a certificate of completion.

At the end of this course, you'll understand how MCP works and how to build your own AI applications that leverage external data and tools using the latest MCP standards.
  • 1 reply
·
clem 
posted an update 10 days ago
view post
Post
3089
Very cool to see pytorch contributing on Hugging Face. Time to follow them to see what they're cooking!
  • 2 replies
·
Nymbo 
posted an update 14 days ago
view post
Post
1750
Haven't seen this posted anywhere - Llama-3.3-8B-Instruct is available on the new Llama API. Is this a new model or did someone mislabel Llama-3.1-8B?
  • 1 reply
·
clem 
posted an update 16 days ago
wolfram 
posted an update 17 days ago
view post
Post
7097
Finally finished my extensive **Qwen 3 evaluations** across a range of formats and quantisations, focusing on **MMLU-Pro** (Computer Science).

A few take-aways stood out - especially for those interested in local deployment and performance trade-offs:

1️⃣ **Qwen3-235B-A22B** (via Fireworks API) tops the table at **83.66%** with ~55 tok/s.
2️⃣ But the **30B-A3B Unsloth** quant delivered **82.20%** while running locally at ~45 tok/s and with zero API spend.
3️⃣ The same Unsloth build is ~5x faster than Qwen's **Qwen3-32B**, which scores **82.20%** as well yet crawls at <10 tok/s.
4️⃣ On Apple silicon, the **30B MLX** port hits **79.51%** while sustaining ~64 tok/s - arguably today's best speed/quality trade-off for Mac setups.
5️⃣ The **0.6B** micro-model races above 180 tok/s but tops out at **37.56%** - that's why it's not even on the graph (50 % performance cut-off).

All local runs were done with LM Studio on an M4 MacBook Pro, using Qwen's official recommended settings.

**Conclusion:** Quantised 30B models now get you ~98 % of frontier-class accuracy - at a fraction of the latency, cost, and energy. For most local RAG or agent workloads, they're not just good enough - they're the new default.

Well done, Qwen - you really whipped the llama's ass! And to OpenAI: for your upcoming open model, please make it MoE, with toggleable reasoning, and release it in many sizes. *This* is the future!
·
clem 
posted an update 18 days ago
view post
Post
4039
What are you using to evaluate models or AI systems? So far we're building lighteval & leaderboards on the hub but still feels early & a lot more to build. What would be useful to you?
·
clem 
posted an update 22 days ago
clem 
posted an update 23 days ago
view post
Post
1535
The meta-llama org just crossed 40,000 followers on Hugging Face. Grateful for all their impact on the field sharing the Llama weights openly and much more!

We need more of this from all other big tech to make the AI more open, collaborative and beneficial to all!
Nymbo 
posted an update 23 days ago
view post
Post
1614
PSA for anyone using Nymbo/Nymbo_Theme or Nymbo/Nymbo_Theme_5 in a Gradio space ~

Both of these themes have been updated to fix some of the long-standing inconsistencies ever since the transition to Gradio v5. Textboxes are no longer bright green and in-line code is readable now! Both themes are now visually identical across versions.

If your space is already using one of these themes, you just need to restart your space to get the latest version. No code changes needed.
burtenshaw 
posted an update 23 days ago
view post
Post
2095
Qwen 3 Fine tuning >> MoE. Update the experiment thread to include config and script for fine-tuning the Qwen3-30B-A3B model.

The goal is to make a low latency non-thinking model for a daily driver coding, so 3 billion parameters active should be perfect.

✔️ training running
✔️ evals running
⏭️ improve dataset

The moe isn't going to fit into colab's A100 even with quantization (🙏 @UnslothAI ). So I've been working on HF spaces' H100s for this. Everything is available in the tread and I'll share more tomorrow.

burtenshaw/Qwen3-Code-Lite#1
julien-c 
posted an update 29 days ago
view post
Post
4444
BOOOOM: Today I'm dropping TINY AGENTS

the 50 lines of code Agent in Javascript 🔥

I spent the last few weeks working on this, so I hope you will like it.

I've been diving into MCP (Model Context Protocol) to understand what the hype was all about.

It is fairly simple, but still quite powerful: MCP is a standard API to expose sets of Tools that can be hooked to LLMs.

But while doing that, came my second realization:

Once you have a MCP Client, an Agent is literally just a while loop on top of it. 🤯

➡️ read it exclusively on the official HF blog: https://huggingface.co/blog/tiny-agents
  • 1 reply
·
burtenshaw 
posted an update about 1 month ago
view post
Post
2513
The rebooted LLM course starts today with an overhauled chapter 1 on Transformers:

👉 Follow the org to join the course: huggingface-course

We’re starting from the foundations of modern generative AI by looking at transformers. This chapter is expanded in depth and features so contains new material like:

FREE and CERTIFIED exam on fundamentals of transformers
deeper exploration of transformer architectures and attention mechanisms
end -to-end exploration of inference strategies for prefill and decode steps

The course has leveled up in complexity and depth, so this a great time to join in if you want to build you own AI models.
clem 
posted an update about 1 month ago
view post
Post
4015
Energy is a massive constraint for AI but do you even know what energy your chatGPT convos are using?

We're trying to change this by releasing ChatUI-energy, the first interface where you see in real-time what energy your AI conversations consume. Great work from @jdelavande powered by spaces & TGI, available for a dozen of open-source models like Llama, Mistral, Qwen, Gemma and more.

jdelavande/chat-ui-energy

Should all chat interfaces have this? Just like ingredients have to be shown on products you buy, we need more transparency in AI for users!
  • 3 replies
·
clem 
posted an update about 1 month ago
view post
Post
2966
Just crossed half a million public apps on Hugging Face. A new public app is created every minute these days 🤯🤯🤯

What's your favorite? http://hf.co/spaces
  • 3 replies
·
burtenshaw 
posted an update about 1 month ago
view post
Post
1986
Hacked my presentation building with inference providers, Cohere command a, and sheer simplicity. Use this script if you’re burning too much time on presentations:

🔗 https://github.com/burtenshaw/course_generator/blob/main/scripts/create_presentation.py

This is what it does:
- uses command a to generates slides and speaker notes based on some material.
- it renders the material in remark open format and imports all images, tables, etc
- you can then review the slides as markdown and iterate
- export to either pdf or pptx using backslide

🚀 Next steps are: add text to speech for the audio and generate a video. This should make Hugging Face educational content scale to a billion AI Learners.
  • 1 reply
·