lora concepts library

AI & ML interests

None defined yet.

lora-library's activity

zamal 
posted an update about 12 hours ago
view post
Post
484
🚀 DeepGit Lite is live! 🔍✨

Hey folks!
Just launched DeepGit Lite — a lighter version of DeepGit with fewer components under the hood.
It won’t perform quite like the full powerhouse, but it’s great for a quick peek and first-hand feel! ⚙️👀

Give it a spin and tell us what you think!
👉 Try it here zamal/DeepGit-lite
#opensource #DeepGit #gradio #githubresearch
zamal 
posted an update 3 days ago
view post
Post
2369
DeepGit: Your GitHub Gold Digger! 💰🚀
Hey Hugging Face gang! Meet DeepGit—my open-source sidekick that rips through GitHub to snag repos that fit you. Done with dead-end searches? Me too. Built it with LangGraph and some dope tricks:
Embeddings grab the good stuff (HF magic, baby!)

Re-ranking nails the best picks

Snoops docs, code, and buzz in one slick flow

Drops a clean list of hidden gems 💎

Unearth that sneaky ML lib or Python gem—run python app.py or langgraph dev and boom! Peek it at https://github.com/zamalali/DeepGit. Fork it, tweak it, love it—Docker’s in, HF vibes are strong. Drop a 🌟 or a crazy idea—I’m pumped to jam with you all! 🪂
zamal 
posted an update about 1 month ago
view post
Post
1996
🚀 ftBoost is LIVE – Stop Struggling with Fine-Tuning Data!

Alright folks, if you’re tired of manually crafting fine-tuning datasets, ftBoost is here to do the heavy lifting. One-click, LangChain-Groq-powered data augmentation that scales your training data in OpenAI, Gemini, Mistral, and LLaMA formats—automatically.

🔥 What’s inside?
✅ Smart Augmentations – Paraphrasing, back translation, synonym swapping & synthetic noise.
✅ No more JSONL headaches – Auto-formats everything for OpenAI, Gemini, Mistral & LLaMA.
✅ Custom tuning – Adjust similarity, diversity, and fluency in real-time.
✅ Upload, generate, download – That’s it.

⚡ If you’re fine-tuning LLMs, this will save you hours.

🚀 Try it now: 👉 zamal/Finetune-Boost

🌟 Give us a star on GitHub!

Let me know what you think & how it boosts your workflow! 🔥
zamal 
posted an update 2 months ago
view post
Post
603
🚀 Try Out RAG Demo! 🚀

A Hugging Face Space where you can compare DeepSeek-R1 vs Llama-3 using Stuff RAG (Retrieval-Augmented Generation)!

🔍 Upload a PDF, ask questions, and see how both models perform in real-time!

Try out now:
zamal/Deepseek-R1-vs-LLama3
  • 1 reply
·
zamal 
posted an update 3 months ago
view post
Post
1476
zamal/Multimodal-Chat-PDF

🚀 Introducing Chat PDF Multimodal 💬

Interact with your PDF documents like never before! 🤯
Extract text & images, then ask context-aware questions based on both. Powered by RAG techniques & multimodal LLMs. Perfect for studying, research & more! 📝👀
Try it out now!!!! ✍️

#LlavaNext #MultimodalAI #Transformers
zamal 
posted an update 6 months ago
view post
Post
1831
🚀 Announcement for the Lovely community! 🚀

Just launched the zamal/DeepSeek-VL-1.3B-Chat on Hugging Face, and it's ready for YOU to explore! 💬🖼️

This full-fledged model is perfect for advanced image and text interactions, with zero GPU required. The Deepseek VL-1.3B Chat typically needs around 8 GB of VRAM and storage of almost 4 GB, but now you can experience it hassle-free right on our space!

Want something lighter? We’ve also uploaded a 4 bit quantized version (just around 1GB!), available on my profile. Perfect for those with limited hardware. 🌍🔍

Come try it now and see what this model can do! 🚀✨

zamal 
posted an update 6 months ago
view post
Post
2087
Hello, lovely community! 🌟

zamal/Molmo-4bit Thrilled to announce that the Molmo 7B 4-bit Space is now live! 🚀 The model size has been reduced by six times with almost no performance loss, and the results will leave you amazed!

It runs on zero GPU, making it incredibly accessible for everyone!

Check it out here and start exploring today!

Happy experimenting! 🎉
zamal 
posted an update 6 months ago
view post
Post
1957
🚀 New Model Release: zamal/Molmo-7B-GPTQ-4bit 🚀

Hello lovely community,

zamal/Molmo-7B-GPTQ-4bit model is now available for all! This model has been highly quantized, reducing its size by almost six times. It now occupies significantly less space and vRAM, making it perfect for deployment on resource-constrained devices without compromising performance.

Now we get:
Efficient Performance: Maintains high accuracy while being highly quantized.
Reduced Size: The model size is reduced by nearly six times, optimizing storage and memory usage.
Versatile Application: Ideal for integrating a powerful visual language model into various projects particularly multi rag chains.
Check it out!

  • 1 reply
·