Hugging Face

Enterprise
company
Verified
Activity Feed

AI & ML interests

The AI community building the future.

Recent Activity

Articles

huggingface's activity

julien-c 
in huggingface/HuggingDiscussions about 14 hours ago

Upload sample-random.txt

#65 opened about 21 hours ago by
hapm1

Upload sample-random.txt

#66 opened about 21 hours ago by
hapm1
clem 
posted an update 1 day ago
view post
Post
1929
Before 2020, most of the AI field was open and collaborative. For me, that was the key factor that accelerated scientific progress and made the impossible possible—just look at the “T” in ChatGPT, which comes from the Transformer architecture openly shared by Google.

Then came the myth that AI was too dangerous to share, and companies started optimizing for short-term revenue. That led many major AI labs and researchers to stop sharing and collaborating.

With OAI and sama now saying they're willing to share open weights again, we have a real chance to return to a golden age of AI progress and democratization—powered by openness and collaboration, in the US and around the world.

This is incredibly exciting. Let’s go, open science and open-source AI!
·
m-ric 
posted an update 1 day ago
view post
Post
1176
🚀 DeepSeek R1 moment has come for GUI agents: Rule-based Reinforcement Learning gives better results than SFT with 500x smaller datasets!

Traditionally (by which I mean "in the last few months"), GUI agents have been trained with supervised fine-tuning (SFT). This meant, collecting huge datasets of screen captures from people using computers, and using these to fine-tune your model. 📚

👉 But last week, a new paper introduced UI-R1, applying DeepSeek's R1-style rule-based reinforcement learning (RL) specifically to GUI action prediction tasks.
This is big news: with RL, maybe we could build good agents without the need for huge datasets.

UI-R1 uses a unified reward function that evaluates multiple responses from models, optimizing via policy algorithms like Group Relative Policy Optimization (GRPO).

Specifically, the reward function assesses:
🎯 Action type accuracy: Does the predicted action match the ground truth?
📍 Coordinate accuracy (specifically for clicks): Is the predicted click within the correct bounding box?
📑 Output format: Does the model clearly articulate both its reasoning and final action?

Using just 136 carefully selected mobile tasks—compared to 76,000 tasks for larger models like OS-Atlas—UI-R1 shows significant efficiency and improved performance:
📈 Boosted action prediction accuracy from 76% to 89% on AndroidControl.
🌐 Outperformed larger, SFT-trained models (e.g., OS-Atlas-7B), demonstrating superior results with vastly fewer data points (136 tasks vs. 76K).
🔍 Enhanced adaptability and generalization, excelling even in out-of-domain scenarios.

The paper tests this RL-based method only in low-level GUI tasks. Could it generalize to more complex interactions? 🧐

Read the full paper here 👉 UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning (2503.21620)
Wauplin 
posted an update 2 days ago
view post
Post
1622
‼️ huggingface_hub's v0.30.0 is out with our biggest update of the past two years!

Full release notes: https://github.com/huggingface/huggingface_hub/releases/tag/v0.30.0.

🚀 Ready. Xet. Go!

Xet is a groundbreaking new protocol for storing large objects in Git repositories, designed to replace Git LFS. Unlike LFS, which deduplicates files, Xet operates at the chunk level—making it a game-changer for AI builders collaborating on massive models and datasets. Our Python integration is powered by [xet-core](https://github.com/huggingface/xet-core), a Rust-based package that handles all the low-level details.

You can start using Xet today by installing the optional dependency:

pip install -U huggingface_hub[hf_xet]


With that, you can seamlessly download files from Xet-enabled repositories! And don’t worry—everything remains fully backward-compatible if you’re not ready to upgrade yet.

Blog post: https://huggingface.co/blog/xet-on-the-hub
Docs: https://huggingface.co/docs/hub/en/storage-backends#xet


⚡ Inference Providers

- We’re thrilled to introduce Cerebras and Cohere as official inference providers! This expansion strengthens the Hub as the go-to entry point for running inference on open-weight models.

- Novita is now our 3rd provider to support text-to-video task after Fal.ai and Replicate.

- Centralized billing: manage your budget and set team-wide spending limits for Inference Providers! Available to all Enterprise Hub organizations.

from huggingface_hub import InferenceClient
client = InferenceClient(provider="fal-ai", bill_to="my-cool-company")
image = client.text_to_image(
    "A majestic lion in a fantasy forest",
    model="black-forest-labs/FLUX.1-schnell",
)
image.save("lion.png")


- No more timeouts when generating videos, thanks to async calls. Available right now for Fal.ai, expecting more providers to leverage the same structure very soon!
·