Inference Provider

VERIFIED
24,031,237 monthly requests

AI & ML interests

None defined yet.

tomaarsen 
posted an update 15 days ago
view post
Post
2520
‼️Sentence Transformers v5.0 is out! The biggest update yet introduces Sparse Embedding models, encode methods improvements, Router module for asymmetric models & much more. Sparse + Dense = 🔥 hybrid search performance! Details:

1️⃣ Sparse Encoder Models
Brand new support for sparse embedding models that generate high-dimensional embeddings (30,000+ dims) where <1% are non-zero:

- Full SPLADE, Inference-free SPLADE, and CSR architecture support
- 4 new modules, 12 new losses, 9 new evaluators
- Integration with @elastic-co , @opensearch-project , @NAVER LABS Europe, @qdrant , @IBM , etc.
- Decode interpretable embeddings to understand token importance
- Hybrid search integration to get the best of both worlds

2️⃣ Enhanced Encode Methods & Multi-Processing
- Introduce encode_query & encode_document automatically use predefined prompts
- No more manual pool management - just pass device list directly to encode()
- Much cleaner and easier to use than the old multi-process approach

3️⃣ Router Module & Advanced Training
- Router module with different processing paths for queries vs documents
- Custom learning rates for different parameter groups
- Composite loss logging - see individual loss components
- Perfect for two-tower architectures

4️⃣ Comprehensive Documentation & Training
- New Training Overview, Loss Overview, API Reference docs
- 6 new training example documentation pages
- Full integration examples with major search engines
- Extensive blogpost on training sparse models

Read the comprehensive blogpost about training sparse embedding models: https://huggingface.co/blog/train-sparse-encoder

See the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/v5.0.0

What's next? We would love to hear from the community! What sparse encoder models would you like to see? And what new capabilities should Sentence Transformers handle - multimodal embeddings, late interaction models, or something else? Your feedback shapes our roadmap!
jeffboudier 
posted an update 22 days ago
view post
Post
410
AMD summer hackathons are here!
A chance to get hands-on with MI300X GPUs and accelerate models.
🇫🇷 Paris - Station F - July 5-6
🇮🇳 Mumbai - July 12-13
🇮🇳 Bengaluru - July 19-20

Hugging Face and GPU Mode will be on site and on July 6 in Paris @ror will share lessons learned while building new kernels to accelerate Llama 3.1 405B on ROCm

Register to Paris event: https://lu.ma/fmvdjmur?tk=KeAbiP
All dates: https://lu.ma/calendar/cal-3sxhD5FdxWsMDIz
reach-vb 
posted an update about 1 month ago
view post
Post
2855
Excited to onboard FeatherlessAI on Hugging Face as an Inference Provider - they bring a fleet of 6,700+ LLMs on-demand on the Hugging Face Hub 🤯

Starting today, you'd be able to access all those LLMs (OpenAI compatible) on HF model pages and via OpenAI client libraries too! 💥

Go, play with it today: https://huggingface.co/blog/inference-providers-featherless

P.S. They're also bringing on more GPUs to support all your concurrent requests!
jeffboudier 
posted an update about 1 month ago
view post
Post
1665
Today we launched Training Cluster as a Service, to make the new DGX Cloud Lepton supercloud easily accessible to AI researchers.

Hugging Face will collaborate with NVIDIA to provision and set up GPU training clusters to make them available for the duration of training runs.

Hugging Face organizations can sign up here: https://huggingface.co/training-cluster
victor 
posted an update about 1 month ago
view post
Post
3389
Open Source Avengers, Assemble! Ask an expert AI agent team to solve complex problems together 🔥

Consilium brings together multiple agents that debate and use live research (web, arXiv, SEC) to reach a consensus. You set the strategy, they find the answer.

Credit to @azettl for this awesome demo: Agents-MCP-Hackathon/consilium_mcp
  • 2 replies
·
jeffboudier 
posted an update about 2 months ago
jeffboudier 
posted an update about 2 months ago
view post
Post
493
Wrapping up a week of shipping and announcements with Dell Enterprise Hub now featuring AI Applications, on-device models for AI PCs, a new CLI and Python SDK... all you need for building AI on premises!

Blog post has all the details: https://huggingface.co/blog/dell-ai-applications
celinah 
posted an update about 2 months ago
view post
Post
2316
✨ Today we’re releasing Tiny Agents in Python — an MCP-powered Agent in ~70 lines of code 🐍

Inspired by Tiny Agents in JS from @julien-c , we ported the idea to Python and integrated it directly into huggingface_hub — with a built-in MCP Client and a Tiny Agents CLI.

TL;DR: With MCP (Model Context Protocol), you can expose tools like web search or image generation and connect them directly to LLMs. It’s simple — and surprisingly powerful.

pip install "huggingface_hub[mcp]>=0.32.0"

We wrote a blog post where we show how to run Tiny Agents, and dive deeper into how they work and how to build your own.
👉 https://huggingface.co/blog/python-tiny-agents

  • 1 reply
·
reach-vb 
posted an update about 2 months ago
view post
Post
4092
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! 💥

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! 🤗
·