Frugal AI Challenge

Enterprise
community

AI & ML interests

None defined yet.

Recent Activity

Articles

frugal-ai-challenge's activity

TonicΒ 
posted an update 6 days ago
view post
Post
983
πŸ™‹πŸ»β€β™‚οΈHey there folks,

Did you know that you can use ModernBERT to detect model hallucinations ?

Check out the Demo : Tonic/hallucination-test

See here for Medical Context Demo : MultiTransformer/tonic-discharge-guard

check out the model from KRLabs : KRLabsOrg/lettucedect-large-modernbert-en-v1

and the library they kindly open sourced for it : https://github.com/KRLabsOrg/LettuceDetect

πŸ‘†πŸ»if you like this topic please contribute code upstream πŸš€

  • 2 replies
Β·
TonicΒ 
posted an update 8 days ago
view post
Post
636
Powered by KRLabsOrg/lettucedect-large-modernbert-en-v1 from KRLabsOrg.

Detect hallucinations in answers based on context and questions using ModernBERT with 8192-token context support!

### Model Details
- **Model Name**: [lettucedect-large-modernbert-en-v1]( KRLabsOrg/lettucedect-large-modernbert-en-v1)
- **Organization**: [KRLabsOrg](https://huggingface.co/KRLabsOrg)
- **Github**: [https://github.com/KRLabsOrg/LettuceDetect](https://github.com/KRLabsOrg/LettuceDetect)
- **Architecture**: ModernBERT (Large) with extended context support up to 8192 tokens
- **Task**: Token Classification / Hallucination Detection
- **Training Dataset**: [RagTruth]( wandb/RAGTruth-processed)
- **Language**: English
- **Capabilities**: Detects hallucinated spans in answers, provides confidence scores, and calculates average confidence across detected spans.

LettuceDetect excels at processing long documents to determine if an answer aligns with the provided context, making it a powerful tool for ensuring factual accuracy.
sashaΒ 
published an article 30 days ago

solves 500 errors for some users

#4 opened about 1 month ago by
Tonic