🇪🇺 Policy Thoughts in the EU AI Act Implementation 🇪🇺
There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.
I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.
We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.
🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!
- Pre-training code with nanotron - Evaluation suite with lighteval - Synthetic data generation using distilabel (powers our new SFT dataset HuggingFaceTB/smoltalk) - Post-training scripts with TRL & the alignment handbook - On-device tools with llama.cpp for summarization, rewriting & agents
Apache 2.0 licensed. V2 pre-training data mix coming soon!
🚨 How green is your model? 🌱 Introducing a new feature in the Comparator tool: Environmental Impact for responsible #LLM research! 👉 open-llm-leaderboard/comparator Now, you can not only compare models by performance, but also by their environmental footprint!
🌍 The Comparator calculates CO₂ emissions during evaluation and shows key model characteristics: evaluation score, number of parameters, architecture, precision, type... 🛠️ Make informed decisions about your model's impact on the planet and join the movement towards greener AI!
🚀 New feature of the Comparator of the 🤗 Open LLM Leaderboard: now compare models with their base versions & derivatives (finetunes, adapters, etc.). Perfect for tracking how adjustments affect performance & seeing innovations in action. Dive deeper into the leaderboard!
🛠️ Here's how to use it: 1. Select your model from the leaderboard. 2. Load its model tree. 3. Choose any base & derived models (adapters, finetunes, merges, quantizations) for comparison. 4. Press Load. See side-by-side performance metrics instantly!
Ready to dive in? 🏆 Try the 🤗 Open LLM Leaderboard Comparator now! See how models stack up against their base versions and derivatives to understand fine-tuning and other adjustments. Easier model analysis for better insights! Check it out here: open-llm-leaderboard/comparator 🌐
When you come across an interesting dataset, you often wonder: Which topics frequently appear in these documents? 🤔 What is this data really about? 📊
Topic modeling helps answer these questions by identifying recurring themes within a collection of documents. This process enables quick and efficient exploratory data analysis.
I’ve been working on an app that leverages BERTopic, a flexible framework designed for topic modeling. Its modularity makes BERTopic powerful, allowing you to switch components with your preferred algorithms. It also supports handling large datasets efficiently by merging models using the BERTopic.merge_models approach. 🔗
🔍 How do we make this work? Here’s the stack we’re using:
📂 Data Source ➡️ Hugging Face datasets with DuckDB for retrieval 🧠 Text Embeddings ➡️ Sentence Transformers (all-MiniLM-L6-v2) ⚡ Dimensionality Reduction ➡️ RAPIDS cuML UMAP for GPU-accelerated performance 🔍 Clustering ➡️ RAPIDS cuML HDBSCAN for fast clustering ✂️ Tokenization ➡️ CountVectorizer 🔧 Representation Tuning ➡️ KeyBERTInspired + Hugging Face Inference Client with Meta-Llama-3-8B-Instruct 🌍 Visualization ➡️ Datamapplot library Check out the space and see how you can quickly generate topics from your dataset: datasets-topics/topics-generator
Dive into multi-model evaluations, pinpoint the best model for your needs, and explore insights across top open LLMs all in one place. Ready to level up your model comparison game?
🚨 Instruct-tuning impacts models differently across families! Qwen2.5-72B-Instruct excels on IFEval but struggles with MATH-Hard, while Llama-3.1-70B-Instruct avoids MATH performance loss! Why? Can they follow the format in examples? 📊 Compare models: open-llm-leaderboard/comparator
Need an LLM assistant but unsure which hashtag#smolLM to run locally? With so many models available, how can you decide which one suits your needs best? 🤔
If the model you’re interested in is evaluated on the Hugging Face Open LLM Leaderboard, there’s an easy way to compare them: use the model Comparator tool: open-llm-leaderboard/comparator Let’s walk through an example👇
Let’s compare two solid options: - Qwen2.5-1.5B-Instruct from Alibaba Cloud Qwen (1.5B params) - gemma-2-2b-it from Google (2.5B params)
For an assistant, you want a model that’s great at instruction following. So, how do these two models stack up on the IFEval task?
What about other evaluations? Both models are close in performance on many other tasks, showing minimal differences. Surprisingly, the 1.5B Qwen model performs just as well as the 2.5B Gemma in many areas, even though it's smaller in size! 📊
This is a great example of how parameter size isn’t everything. With efficient design and training, a smaller model like Qwen2.5-1.5B can match or even surpass larger models in certain tasks.
Looking for other comparisons? Drop your model suggestions below! 👇