Voxel51

company
Verified
Activity Feed

AI & ML interests

Visual AI, Computer vision, Multimodal AI, Data Centric AI

Recent Activity

harpreetsahotaย  updated a dataset about 1 month ago
Voxel51/PIDray
harpreetsahotaย  updated a dataset about 2 months ago
Voxel51/TAMPAR
dguralย  updated a dataset 2 months ago
Voxel51/AFO-Aerial_Floating_Objects
View all activity

Voxel51's activity

harpreetsahotaย 
posted an update 11 months ago
view post
Post
2288
The Coachella of Computer Vision, CVPR, is right around the corner. In anticipation of the conference, I curated a dataset of the papers.

I'll have a technical blog post out tomorrow doing some analysis on the dataset, but I'm so hyped that I wanted to get it out to the community ASAP.

The dataset consists of the following fields:

- An image of the first page of the paper
- title: The title of the paper
- authors_list: The list of authors
- abstract: The abstract of the paper
- arxiv_link: Link to the paper on arXiv
- other_link: Link to the project page, if found
- category_name: The primary category this paper according to [arXiv taxonomy](https://arxiv.org/category_taxonomy)
- all_categories: All categories this paper falls into, according to arXiv taxonomy
- keywords: Extracted using GPT-4o

Here's how I created the dataset ๐Ÿ‘‡๐Ÿผ

Generic code for building this dataset can be found [here](https://github.com/harpreetsahota204/CVPR-2024-Papers).

This dataset was built using the following steps:

- Scrape the CVPR 2024 website for accepted papers
- Use DuckDuckGo to search for a link to the paper's abstract on arXiv
- Use arXiv.py (python wrapper for the arXiv API) to extract the abstract and categories, and download the pdf for each paper
- Use pdf2image to save the image of paper's first page
- Use GPT-4o to extract keywords from the abstract

Voxel51/CVPR_2024_Papers
jamarksย 
posted an update about 1 year ago
view post
Post
2237
FiftyOne Datasets <> Hugging Face Hub Integration!

As of yesterday's release of FiftyOne 0.23.8, the FiftyOne open source library for dataset curation and visualization is now integrated with the Hugging Face Hub!

You can now load Parquet datasets from the hub and have them converted directly into FiftyOne datasets. To load MNIST, for example:

pip install -U fiftyone


import fiftyone as fo
import fiftyone.utils.huggingface as fouh

dataset = fouh.load_from_hub(
    "mnist",
    format="ParquetFilesDataset",
    classification_fields="label",
)
session = fo.launch_app(dataset)


You can also load FiftyOne datasets directly from the hub. Here's how you load the first 1000 samples from the VisDrone dataset:

import fiftyone as fo
import fiftyone.utils.huggingface as fouh

dataset = fouh.load_from_hub("jamarks/VisDrone2019-DET", max_samples=1000)

# Launch the App
session = fo.launch_app(dataset)


And tying it all together, you can push your FiftyOne datasets directly to the hub:

import fiftyone.zoo as foz
import fiftyone.utils.huggingface as fouh

dataset = foz.load_zoo_dataset("quickstart")
fouh.push_to_hub(dataset, "my-dataset")


Major thanks to @tomaarsen @davanstrien @severo @osanseviero and @julien-c for helping to make this happen!!!

Full documentation and details here: https://docs.voxel51.com/integrations/huggingface.html#huggingface-hub
ยท
harpreetsahotaย 
posted an update about 1 year ago
view post
Post
google/gemma-7b-it is super good!

I wasn't convinced at first, but after vibe-checking it...I'm quite impressed.

I've got a notebook here, which is kind of a framework for vibe-checking LLMs.

In this notebook, I take Gemma for a spin on a variety of prompts:
โ€ข [nonsensical tokens]( harpreetsahota/diverse-token-sampler
โ€ข [conversation where I try to get some PII)( harpreetsahota/red-team-prompts-questions)
โ€ข [summarization ability]( lighteval/summarization)
โ€ข [instruction following]( harpreetsahota/Instruction-Following-Evaluation-for-Large-Language-Models
โ€ข [chain of thought reasoning]( ssbuild/alaca_chain-of-thought)

I then used LangChain evaluators (GPT-4 as judge), and track everything in LangSmith. I made public links to the traces where you can inspect the runs.

I hope you find this helpful, and I am certainly open to feedback, criticisms, or ways to improve.

Cheers:

You can find the notebook here: https://colab.research.google.com/drive/1RHzg0FD46kKbiGfTdZw9Fo-DqWzajuoi?usp=sharing
harpreetsahotaย 
posted an update over 1 year ago
view post
Post
โœŒ๐ŸผTwo new models dropped today ๐Ÿ‘‡๐Ÿฝ

1) ๐Ÿ‘ฉ๐Ÿพโ€๐Ÿ’ป ๐ƒ๐ž๐œ๐ข๐‚๐จ๐๐ž๐ซ-๐Ÿ”๐

๐Ÿ‘‰๐Ÿฝ Supports ๐Ÿ– ๐ฅ๐š๐ง๐ ๐ฎ๐š๐ ๐ž๐ฌ: C, C# C++, GO, Rust, Python, Java, and Javascript.

๐Ÿ‘‰๐Ÿฝ Released under the ๐€๐ฉ๐š๐œ๐ก๐ž ๐Ÿ.๐ŸŽ ๐ฅ๐ข๐œ๐ž๐ง๐ฌ๐ž

๐ŸฅŠ ๐๐ฎ๐ง๐œ๐ก๐ž๐ฌ ๐š๐›๐จ๐ฏ๐ž ๐ข๐ญ๐ฌ ๐ฐ๐ž๐ข๐ ๐ก๐ญ ๐œ๐ฅ๐š๐ฌ๐ฌ ๐จ๐ง ๐‡๐ฎ๐ฆ๐š๐ง๐„๐ฏ๐š๐ฅ: Beats out CodeGen 2.5 7B and StarCoder 7B on most supported languages. Has a 3-point lead over StarCoderBase 15.5B for Python

๐Ÿ’ป ๐‘ป๐’“๐’š ๐’Š๐’• ๐’๐’–๐’•:

๐Ÿƒ ๐Œ๐จ๐๐ž๐ฅ ๐‚๐š๐ซ๐: Deci/DeciCoder-6B

๐Ÿ““ ๐๐จ๐ญ๐ž๐›๐จ๐จ๐ค: https://colab.research.google.com/drive/1QRbuser0rfUiFmQbesQJLXVtBYZOlKpB

๐Ÿชง ๐‡๐ฎ๐ ๐ ๐ข๐ง๐ ๐…๐š๐œ๐ž ๐’๐ฉ๐š๐œ๐ž: Deci/DeciCoder-6B-Demo

2) ๐ŸŽจ ๐ƒ๐ž๐œ๐ข๐ƒ๐ข๐Ÿ๐Ÿ๐ฎ๐ฌ๐ข๐จ๐ง ๐ฏ๐Ÿ.๐ŸŽ

๐Ÿ‘‰๐Ÿฝ Produces quality images on par with Stable Diffusion v1.5, but ๐Ÿ.๐Ÿ” ๐ญ๐ข๐ฆ๐ž๐ฌ ๐Ÿ๐š๐ฌ๐ญ๐ž๐ซ ๐ข๐ง ๐Ÿ’๐ŸŽ% ๐Ÿ๐ž๐ฐ๐ž๐ซ ๐ข๐ญ๐ž๐ซ๐š๐ญ๐ข๐จ๐ง๐ฌ

๐Ÿ‘‰๐Ÿฝ Employs a ๐ฌ๐ฆ๐š๐ฅ๐ฅ๐ž๐ซ ๐š๐ง๐ ๐Ÿ๐š๐ฌ๐ญ๐ž๐ซ ๐”-๐๐ž๐ญ ๐œ๐จ๐ฆ๐ฉ๐จ๐ง๐ž๐ง๐ญ ๐ฐ๐ก๐ข๐œ๐ก ๐ก๐š๐ฌ ๐Ÿ–๐Ÿ”๐ŸŽ ๐ฆ๐ข๐ฅ๐ฅ๐ข๐จ๐ง ๐ฉ๐š๐ซ๐š๐ฆ๐ž๐ญ๐ž๐ซ๐ฌ.

๐Ÿ‘‰๐Ÿฝ Uses an optimized scheduler, ๐’๐ช๐ฎ๐ž๐ž๐ณ๐ž๐๐ƒ๐๐Œ++, which ๐œ๐ฎ๐ญ๐ฌ ๐๐จ๐ฐ๐ง ๐ญ๐ก๐ž ๐ง๐ฎ๐ฆ๐›๐ž๐ซ ๐จ๐Ÿ ๐ฌ๐ญ๐ž๐ฉ๐ฌ ๐ง๐ž๐ž๐๐ž๐ ๐ญ๐จ ๐ ๐ž๐ง๐ž๐ซ๐š๐ญ๐ž ๐š ๐ช๐ฎ๐š๐ฅ๐ข๐ญ๐ฒ ๐ข๐ฆ๐š๐ ๐ž ๐Ÿ๐ซ๐จ๐ฆ ๐Ÿ๐Ÿ” ๐ญ๐จ ๐Ÿ๐ŸŽ.

๐Ÿ‘‰๐Ÿฝ Released under the ๐‚๐ซ๐ž๐š๐ญ๐ข๐ฏ๐ž๐Œ๐‹ ๐Ž๐ฉ๐ž๐ง ๐‘๐€๐ˆ๐‹++-๐Œ ๐‹๐ข๐œ๐ž๐ง๐ฌ๐ž.

๐Ÿ’ป ๐‘ป๐’“๐’š ๐’Š๐’• ๐’๐’–๐’•:

๐Ÿƒ ๐Œ๐จ๐๐ž๐ฅ ๐‚๐š๐ซ๐: Deci/DeciDiffusion-v2-0

๐Ÿ““ ๐๐จ๐ญ๐ž๐›๐จ๐จ๐ค: https://colab.research.google.com/drive/11Ui_KRtK2DkLHLrW0aa11MiDciW4dTuB

๐Ÿชง ๐‡๐ฎ๐ ๐ ๐ข๐ง๐ ๐…๐š๐œ๐ž ๐’๐ฉ๐š๐œ๐ž: Deci/DeciDiffusion-v2-0

Help support the projects by liking the model cards and the spaces!

Cheers and happy hacking!