TTS AGI

Enterprise
community
Verified
Activity Feed

AI & ML interests

Decentralized yet unified efforts to accelerate research for Open Text to Speech (TTS) systems!

Recent Activity

TTS-AGI's activity

multimodalart 
posted an update 1 day ago
view post
Post
1615
Self-Forcing - a real-time video distilled model from Wan 2.1 by @adobe is out, and they open sourced it 🐐

I've built a live real time demo on Spaces 📹💨

multimodalart/self-forcing
  • 1 reply
·
reach-vb 
posted an update 8 days ago
view post
Post
1879
Excited to onboard FeatherlessAI on Hugging Face as an Inference Provider - they bring a fleet of 6,700+ LLMs on-demand on the Hugging Face Hub 🤯

Starting today, you'd be able to access all those LLMs (OpenAI compatible) on HF model pages and via OpenAI client libraries too! 💥

Go, play with it today: https://huggingface.co/blog/inference-providers-featherless

P.S. They're also bringing on more GPUs to support all your concurrent requests!
cbensimon 
posted an update 9 days ago
view post
Post
3007
🚀 ZeroGPU now supports PyTorch native quantization via torchao

While it hasn’t been battle-tested yet, Int8WeightOnlyConfig is already working flawlessly in our tests.

Let us know if you run into any issues — and we’re excited to see what the community will build!

import spaces
from diffusers import FluxPipeline
from torchao.quantization.quant_api import Int8WeightOnlyConfig, quantize_

pipeline = FluxPipeline.from_pretrained(...).to('cuda')
quantize_(pipeline.transformer, Int8WeightOnlyConfig()) # Or any other component(s)

@spaces.GPU
def generate(prompt: str):
    return pipeline(prompt).images[0]
·
reach-vb 
posted an update about 1 month ago
view post
Post
3927
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! 💥

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! 🤗
·
clefourrier 
posted an update about 1 month ago
view post
Post
721
Always surprised that so few people actually read the FineTasks blog, on
✨how to select training evals with the highest signal✨

If you're serious about training models without wasting compute on shitty runs, you absolutely should read it!!

An high signal eval actually tells you precisely, during training, how wel & what your model is learning, allowing you to discard the bad runs/bad samplings/...!

The blog covers in depth prompt choice, metrics, dataset, across languages/capabilities, and my fave section is "which properties should evals have"👌
(to know on your use case how to select the best evals for you)

Blog: HuggingFaceFW/blogpost-fine-tasks
  • 2 replies
·
cbensimon 
posted an update about 1 month ago
view post
Post
5791
🚀 ZeroGPU medium size is now available as a power-user feature

Nothing too fancy for now—ZeroGPU Spaces still default to large (70GB VRAM)—but this paves the way for:
- 💰 size-based quotas / pricing (medium will offer significantly more usage than large)
- 🦣 the upcoming xlarge size (141GB VRAM)

You can as of now control GPU size via a Space variable. Accepted values:
- auto (future default)
- medium
- large (current default)

The auto mode checks total CUDA tensor size during startup:
- More than 30GB → large
- Otherwise → medium
·
mrfakename 
posted an update about 2 months ago
view post
Post
3824
Hi everyone,

I just launched TTS Arena V2 - a platform for benchmarking TTS models by blind A/B testing. The goal is to make it easy to compare quality between open-source and commercial models, including conversational ones.

What's new in V2:

- **Conversational Arena**: Evaluate models like CSM-1B, Dia 1.6B, and PlayDialog in multi-turn settings
- **Personal Leaderboard**: Optional login to see which models you tend to prefer
- **Multi-speaker TTS**: Random voices per generation to reduce speaker bias
- **Performance Upgrade**: Rebuilt from Gradio → Flask. Much faster with fewer failed generations.
- **Keyboard Shortcuts**: Vote entirely via keyboard

Also added models like MegaTTS 3, Cartesia Sonic, and ElevenLabs' full lineup.

I'd love any feedback, feature suggestions, or ideas for models to include.

TTS-AGI/TTS-Arena-V2
·
thomwolf 
posted an update 2 months ago
view post
Post
5237
If you've followed the progress of robotics in the past 18 months, you've likely noticed how robotics is increasingly becoming the next frontier that AI will unlock.

At Hugging Face—in robotics and across all AI fields—we believe in a future where AI and robots are open-source, transparent, and affordable; community-built and safe; hackable and fun. We've had so much mutual understanding and passion working with the Pollen Robotics team over the past year that we decided to join forces!

You can already find our open-source humanoid robot platform Reachy 2 on the Pollen website and the Pollen community and people here on the hub at pollen-robotics

We're so excited to build and share more open-source robots with the world in the coming months!
  • 1 reply
·
mrfakename 
posted an update 3 months ago
view post
Post
2896
Papla P1 from Papla Media is now available on the TTS Arena!

Try out Papla's new ultra-realistic TTS model + compare it with other leading models on the TTS Arena: TTS-AGI/TTS-Arena
thomwolf 
posted an update 3 months ago
view post
Post
3542
The new DeepSite space is really insane for vibe-coders
enzostvs/deepsite

With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.

It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.

AI is eating the world and *open-source* AI is eating AI itself!

PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?

PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
  • 1 reply
·
mrfakename 
posted an update 3 months ago
mrfakename 
posted an update 3 months ago