SmolEvalData

non-profit

AI & ML interests

None defined yet.

Recent Activity

eliebakΒ 
posted an update 15 days ago
view post
Post
4505
Kimi K2 tech report is full of gems as always. Here are my notes on it:

> MuonClip: Pretty crazy how after 70k the training stabilizes and the QK-clip is basically inactive. There is also no loss in perf with QK-clip which is not trivial at all (at small scale but with aggressive threshold). Also a cool explanation of why muon makes the logit explode in appendix E (tl;dr is that muon makes the singular value of the update matrix higher)
> Sparsity scaling laws to justify their ratio, they have a very solid training infra that allows the model to be trained at this sparsity level, they could have increased even more but as sparsity increases the training becomes less efficient.
> They diminish the number of attention heads to make it more efficient for long context since attention heads are a big bottleneck for long context. They also remove 2 of the 3 "first dense" layers in the dsv3 arch.

With the sparsity and attention heads (divided by 2) they achieve 83% increased flops compared to deepseek v3 arch at 128k.

> Data: Rephrasing is KEY. They do a lot more synthetic data generation and rephrase their corpus to have different styles, for longer documents they do it by chunk. I'm (half) surprised by the fact that ONLY 1 epoch (assuming same number of training tokens I think?) of data rephrased 10 times has better accuracy than 10 epochs of the same data rephrased once.
> They do rewriting for Math and Knowledge, for Math they apply the ShallowMath recipe and instruct the model to rephrase in a "learning note" style
> They talk about diversity and probably have some internal stuff/eval to test that, as always still a bit unclear for me how to properly measure that.

The infra is also very nice, quick summary:
> PP=16 (1F1B schedule, a bit custom), EP=16, zero1
> No FP8 computation but for storage of specific layers, selective recomputation for inexpensive block, activation offloading to CPU
loubnabnlΒ 
posted an update 3 months ago
eliebakΒ 
posted an update 5 months ago
view post
Post
2066
Google just dropped an exciting technical report for the brand-new Gemma3 model! πŸš€ Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
Β·
anton-lΒ 
posted an update 8 months ago
view post
Post
3150
Introducing πŸ“π…π’π§πžπŒπšπ­π‘: the best public math pre-training dataset with 50B+ tokens!
HuggingFaceTB/finemath

Math remains challenging for LLMs and by training on FineMath we see considerable gains over other math datasets, especially on GSM8K and MATH.

We build the dataset by:
πŸ› οΈ carefully extracting math data from Common Crawl;
πŸ”Ž iteratively filtering and recalling high quality math pages using a classifier trained on synthetic annotations to identify math reasoning and deduction.

We conducted a series of ablations comparing the performance of Llama-3.2-3B-Base after continued pre-training on FineMath and observe notable gains compared to the baseline model and other public math datasets.

We hope this helps advance the performance of LLMs on math and reasoning! πŸš€
We’re also releasing all the ablation models as well as the evaluation code.

HuggingFaceTB/finemath-6763fb8f71b6439b653482c2
loubnabnlΒ 
posted an update 8 months ago
view post
Post
3717
Making SmolLM2 reproducible: open-sourcing our training & evaluation toolkit πŸ› οΈ https://github.com/huggingface/smollm/

- Pre-training code with nanotron
- Evaluation suite with lighteval
- Synthetic data generation using distilabel (powers our new SFT dataset HuggingFaceTB/smoltalk)
- Post-training scripts with TRL & the alignment handbook
- On-device tools with llama.cpp for summarization, rewriting & agents

Apache 2.0 licensed. V2 pre-training data mix coming soon!

Which other tools should we add next?
eliebakΒ 
posted an update about 1 year ago
view post
Post
1840
Wow, impressive 340B model by nvidia with a nice permissive license! πŸš€ The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! πŸ‘€

nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911
loubnabnlΒ 
posted an update about 1 year ago
view post
Post
5901
🍷 FineWeb technical report is out and so is πŸ“š FineWeb-Edu, a 1.3 trillion tokens dataset that outperforms all other open web datasets, with remarkable improvements on educational benchmarksΒ such as MMLU, ARC, and OpenBookQA.

Technical report: HuggingFaceFW/blogpost-fineweb-v1
Dataset: HuggingFaceFW/fineweb-edu

We used Llama 3 generations to train an educational quality classifier, filtering the 15 trillion tokens of FineWeb to select only those with high educational value (an approach also used in Llama 3 and Phi-3 training datasets). We're releasing both FineWeb-Edu and the classifier, along with a larger, less heavily filtered version containing 5.4 trillion tokens.

You can find more details about the dataset and the experiments we ran in the FineWeb technical report, It's a 45-minute read but it contains all the secret sauce for building high quality web datasets.

Enjoy!