AI & ML interests

None defined yet.

Recent Activity

OpenLLM-France's activity

prithivMLmods 
posted an update 2 days ago
view post
Post
3874
OpenAI, Google, Hugging Face, and Anthropic have released guides and courses on building agents, prompting techniques, scaling AI use cases, and more. Below are 10+ minimalistic guides and courses that may help you in your progress. 📖

⤷ Agents Companion : https://www.kaggle.com/whitepaper-agent-companion
⤷ Building Effective Agents : https://www.anthropic.com/engineering/building-effective-agents
⤷ Guide to building agents by OpenAI : https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
⤷ Prompt engineering by Google : https://www.kaggle.com/whitepaper-prompt-engineering
⤷ Google: 601 real-world gen AI use cases : https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
⤷ Prompt engineering by IBM : https://www.ibm.com/think/topics/prompt-engineering-guide
⤷ Prompt Engineering by Anthropic : https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
⤷ Scaling AI use cases : https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
⤷ Prompting Guide 101 : https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
⤷ AI in the Enterprise by OpenAI : https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf

by HF🤗 :
⤷ AI Agents Course by Huggingface : https://huggingface.co/learn/agents-course/unit0/introduction
⤷ Smol-agents Docs : https://huggingface.co/docs/smolagents/en/tutorials/building_good_agents
⤷ MCP Course by Huggingface : https://huggingface.co/learn/mcp-course/unit0/introduction
⤷ Other Course (LLM, Computer Vision, Deep RL, Audio, Diffusion, Cookbooks, etc..) : https://huggingface.co/learn
  • 2 replies
·
prithivMLmods 
posted an update 4 days ago
view post
Post
2045
Just made a demo for Cosmos-Reason1, a physical AI model that understands physical common sense and generates appropriate embodied decisions in natural language through long chain-of-thought reasoning. Also added video understanding support to it. 🤗🚀

✦ Try the demo here : prithivMLmods/DocScope-R1

⤷ Cosmos-Reason1-7B : nvidia/Cosmos-Reason1-7B
⤷ docscopeOCR-7B-050425-exp : prithivMLmods/docscopeOCR-7B-050425-exp
⤷ Captioner-Relaxed : Ertugrul/Qwen2.5-VL-7B-Captioner-Relaxed

⤷ Multimodal Implementations : prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0

⤷ GitHub :
https://github.com/PRITHIVSAKTHIUR/Cosmos-x-DocScope
https://github.com/PRITHIVSAKTHIUR/Nvidia-Cosmos-Reason1-Demo.

To know more about it, visit the model card of the respective model. !!
Tonic 
posted an update 8 days ago
view post
Post
2391
🙋🏻‍♂️ Hey there folks ,

Yesterday the world's first "Learn to Vibe Code" application was released .

As vibe coding is the mainstream paradigm , so now the first educational app is there to support it .

You can try it out already :

https://vibe.takara.ai

and of course it's entirely open source, so i already made my issue and feature branch :-) 🚀
Felguk 
posted an update 11 days ago
view post
Post
2065
Where gone streamlit in huggingface?
  • 2 replies
·
prithivMLmods 
posted an update 13 days ago
view post
Post
2233
Got access to Google's all-new Gemini Diffusion a state-of-the-art text diffusion model. It delivers the performance of Gemini 2.0 Flash-Lite at 5x the speed, generating over 1000 tokens in a fraction of a second and producing impressive results. Below are some initial outputs generated using the model. ♊🔥

Gemini Diffusion Playground ✦ : https://deepmind.google.com/frontiers/gemini-diffusion

Get Access Here : https://docs.google.com/forms/d/1aLm6J13tAkq4v4qwGR3z35W2qWy7mHiiA0wGEpecooo/viewform?edit_requested=true

🔗 To know more, visit: https://deepmind.google/models/gemini-diffusion/
  • 1 reply
·
prithivMLmods 
posted an update 14 days ago
view post
Post
2250
The more optimized explicit content filters with lightweight 𝙜𝙪𝙖𝙧𝙙 models trained based on siglip2 patch16 512 and vit patch16 224 for illustration and explicit content classification for content moderation in social media, forums, and parental controls for safer browsing environments. this version fixes the issues in the previous release, which lacked sufficient resources. 🚀

⤷ Models :
→ siglip2 mini explicit content : prithivMLmods/siglip2-mini-explicit-content [recommended]
→ vit mini explicit content : prithivMLmods/vit-mini-explicit-content

⤷ Building image safety-guard models : strangerguardhf

⤷ Datasets :
→ nsfw multidomain classification : strangerguardhf/NSFW-MultiDomain-Classification
→ nsfw multidomain classification v2.0 : strangerguardhf/NSFW-MultiDomain-Classification-v2.0

⤷ Collection :
→ Updated Versions [05192025] : prithivMLmods/explicit-content-filters-682aaa4733e378561925ca2b
→ Previous Versions : prithivMLmods/siglip2-content-filters-042025-final-680fe4aa1a9d589bf2c915ff

Find a collections inside the collection.👆

To know more about it, visit the model card of the respective model.
  • 1 reply
·
Aurelien-Morgan 
posted an update 18 days ago
prithivMLmods 
posted an update 18 days ago
view post
Post
2686
Models for detecting images generated by diffusion models (Flux.1, SDXL, ..) are trained or fine-tuned using image classification models for content moderation. These models use datasets available on the Hub. For identifying AI-generated images or moderating visual content, the recommended model is OpenSDI-Flux.1-SigLIP2.😺🧨

Models : prithivMLmods/OpenSDI-Flux.1-SigLIP2 [Best approach for AI [Diffusion Generated] vs. real image classification] prithivMLmods/OpenSDI-SD2.1-SigLIP2 prithivMLmods/OpenSDI-SD3-SigLIP2 prithivMLmods/OpenSDI-SD1.5-SigLIP2 prithivMLmods/OpenSDI-SDXL-SigLIP2

Datasets : nebula/OpenSDI_test madebyollin/megalith-10m

Collection : prithivMLmods/opensdi-diffusion-generated-image-classification-682488a3a3e5be7083db3383

Find a collections inside the collection.👆

To know more about it, visit the model card of the respective model.
prithivMLmods 
posted an update 19 days ago
view post
Post
2019
Dropping some image classification models for content moderation and classifiers trained with datasets available on the Hub. All are fine-tuned on the siglip2 backbone, (competitions AIOrNot, Imagenette, and Driver-Drowsiness). Models and datasets are listed below:

🤗Models :
AI or Not : prithivMLmods/AIorNot-SigLIP2
Driver Drowsiness Detection : prithivMLmods/DOZE-GUARD-RLDD
Subset 10 ImageNet : prithivMLmods/IMAGENETTE

🥊Datasets :
+ competitions/aiornot
+ akahana/Driver-Drowsiness-Dataset
+ frgfm/imagenette

🔗Collection :
[The previous collection of models is also listed in the same collection, so you can find more models focused on image classification tasks.]

- prithivMLmods/multiclass-image-classification-05142025-68234c8010a9350a4d6739b5

Find a collections inside the collection.🤪👆

To know more about it, visit the model card of the respective model.
prithivMLmods 
posted an update 23 days ago
view post
Post
3518
Dropping some image classification models for content moderation, balancers, and classifiers trained on synthetic datasets—along with others based on datasets available on the Hub. Also loaded a few low-rank datasets for realistic gender portrait classification and document-type classifiers, all fine-tuned on the SigLIP-2 Patch-16 224 backbone. Models and datasets are listed below:

🤗Models & Datasets :

Realistic Gender Classification : prithivMLmods/Realistic-Gender-Classification
prithivMLmods/Realistic-Portrait-Gender-1024px
Document Type Detection : prithivMLmods/Document-Type-Detection
prithivMLmods/Document-Type-Detection
Face Mask Detection : prithivMLmods/Face-Mask-Detection
DamarJati/Face-Mask-Detection
Alzheimer Stage Classifier : prithivMLmods/Alzheimer-Stage-Classifier
SilpaCS/Augmented_alzheimer
Bone Fracture Detection : prithivMLmods/Bone-Fracture-Detection
Hemg/bone-fracture-detection
GiD Land Cover Classification : prithivMLmods/GiD-Land-Cover-Classification
jonathan-roberts1/GID

🤗Collection : prithivMLmods/siglip2-05102025-681c2b0e406f0740a993fc1c

To know more about it, visit the model card of the respective model.
Nymbo 
posted an update 24 days ago
view post
Post
2079
Haven't seen this posted anywhere - Llama-3.3-8B-Instruct is available on the new Llama API. Is this a new model or did someone mislabel Llama-3.1-8B?
  • 1 reply
·
prithivMLmods 
posted an update 27 days ago
view post
Post
3257
Well, here’s the updated version with the 20,000+ entry sampled dataset for Watermark Filter Content Moderation models incl. [Food25, Weather, Watermark, Marathi/Hindi Sign Language Detection], post-trained from the base models: sigLip2 patch16 224 — now with mixed aspect ratios for better performance and reduced misclassification. 🔥

Models :
➮ Watermark-Detection : prithivMLmods/Watermark-Detection-SigLIP2
⌨︎ Watermark Detection & Batch Image Processing Experimentals, Colab Notebook : https://colab.research.google.com/drive/1mlQrSsSjkGimUt0VyRi3SoWMv8OMyvw3?usp=drive_link
➮ Weather-Image-Classification : prithivMLmods/Weather-Image-Classification
➮ TurkishFoods-25 : prithivMLmods/TurkishFoods-25
➮ Marathi-Sign-Language-Detection : prithivMLmods/Marathi-Sign-Language-Detection
➮ Hindi-Sign-Language-Detection : prithivMLmods/Hindi-Sign-Language-Detection

Datasets :
Watermark : qwertyforce/scenery_watermarks
Weather : prithivMLmods/WeatherNet-05-18039
Turkish Foods 25 : yunusserhat/TurkishFoods-25
Marathi Sign Language : VinayHajare/Marathi-Sign-Language
Hindi Sign Language : Vedant3907/Hindi-Sign-Language-Dataset

Collection : prithivMLmods/content-filters-siglip2-vit-68197e3357d4de18fb3b4d2b
prithivMLmods 
posted an update about 1 month ago
view post
Post
1171
The new versions of Midjourney Mix adapters have been dropped in stranger zone hf. These adapters excel in studio lighting portraits and painterly styles, trained using the style of strangerzonehf/Flux-Midjourney-Mix2-LoRA. They leverage 24-bit colored synthetic images generated form midjourney v6 to achieve high-quality image reproducibility and support adaptable aspect ratios, using Flux.1 as the base model. 🥳

Models [ ⌗ ]

> Flux-Midjourney-Painterly-LoRA : strangerzonehf/Flux-Midjourney-Painterly-LoRA
> Flux-Midjourney-Studio-LoRA : strangerzonehf/Flux-Midjourney-Studio-LoRA

> Collection : strangerzonehf/midjourney-mix-3-ft-flux1-dev-68165d58a2a08025852d63f3

> Space : prithivMLmods/FLUX-LoRA-DLC2

The best dimensions and inference settings for optimal results are as follows: A resolution of 1280 x 832 with a 3:2 aspect ratio is recommended for the best quality, while 1024 x 1024 with a 1:1 aspect ratio serves as the default option. For inference, the recommended number of steps ranges between 30 and 35 to achieve optimal output.
Nymbo 
posted an update about 1 month ago
view post
Post
1923
PSA for anyone using Nymbo/Nymbo_Theme or Nymbo/Nymbo_Theme_5 in a Gradio space ~

Both of these themes have been updated to fix some of the long-standing inconsistencies ever since the transition to Gradio v5. Textboxes are no longer bright green and in-line code is readable now! Both themes are now visually identical across versions.

If your space is already using one of these themes, you just need to restart your space to get the latest version. No code changes needed.
prithivMLmods 
posted an update about 1 month ago
view post
Post
1938
Dropping downstream tasks using newly initialized parameters and weights supports domain-specific image classification post-training, based on the SigLIP-2 models: Patch-16/224, Patch-16/256, and Patch-32/256. For more details, please refer to the respective model cards : 🤗

+ watermark detection : prithivMLmods/Watermark-Detection-SigLIP2
+ resisc45 : prithivMLmods/RESISC45-SigLIP2
+ pacs dg : prithivMLmods/PACS-DG-SigLIP2
+ 3d printed or not : prithivMLmods/3D-Printed-Or-Not-SigLIP2
+ formula or text : prithivMLmods/Formula-Text-Detection

Categorizing Un-Safe Content :
- explicit content patch16 256 : prithivMLmods/siglip2-x256-explicit-content
- explicit content patch32 256 : prithivMLmods/siglip2-x256p32-explicit-content

Collection :
> SigLIP2 Content Filters 042025 Final : https://huggingface.co/collections/prithivMLmods/siglip2-content-filters-04202-final-680fe4aa1a9d589bf2c915ff
> SigLIP2 : google/siglip2-67b5dcef38c175486e240107
> SigLIP2 Multilingual Vision-Language Encoders : https://arxiv.org/pdf/2502.14786