Activity Feed

AI & ML interests

We release large pre-training datasets to accelerate open LLM development. Part of the Hugging Face Science team (hf.co/science)

Recent Activity

guipenedo  updated a dataset about 1 month ago
HuggingFaceFW/fineweb-edu-score-2
guipenedo  updated a dataset about 1 month ago
HuggingFaceFW/fineweb-edu
guipenedo  updated a dataset about 1 month ago
HuggingFaceFW/fineweb
View all activity

eliebak 
posted an update 3 days ago
view post
Post
371
Motif 2.6B tech report is pretty insane, first time i see a model with differential attention and polynorm trained at scale!

> It's trained on 2.5T of token, with a "data mixture schedule" to continuously adjust the mixture over training.
> They use WSD with a "Simple moving average" averaging the last 6 ckpt every 8B token.
> They trained on Finemath, Fineweb2, DCLM, TxT360.
> Lot of details in the finetuning data they used, for instance they used EvolKit and did some "dataset fusion" to have more compressed knowledge into the data.
> They mention they also tried Normalized GPT, QK-Norm and Cross Layer Attention.

Motif-Technologies/Motif-2.6B
meg 
posted an update 16 days ago
meg 
posted an update 21 days ago
view post
Post
382
🤖 ICYMI: Yesterday, Hugging Face and OpenAI partnered to bring open source GPT to the public. This is a Big Deal in "AI world".

0. Common ground setting: OpenAI is the ChatGPT people. An “open source” model is one whose weights are available — that means the model can be “yours”.
1. You don’t have to interact with the company directly, nor give them your interactions, to use the system. The company can't "surveil" you.
2. You can evaluate the unique contributions of their SOTA model much more rigorously than you can when there are collections of models+code behind a closed API. You can find out specifically what the model can and can't do.
3. And you can directly customize it for whatever you'd like. Fine-tuning, wherein you give the model data that's tailored to your use cases and train it some more on that data, is trivial* when you have the model weights.
*Provided you have the compute.
4. You can directly benchmark whatever you'd like. Biases? Energy usage? Strengths/weaknesses? Go for it. You wants it you gots it--this transparency helps people understand SOTA *in general*, not just for this model, but points to, e.g., what's going on with closed Google models as well.
5. One of the most powerful things about "openness" that I've learned is that it cultivates ecosystems of collaborators building on top of one another's brilliance to make systems that are significantly better than they would be if created in isolation.
But, caveat wrt my own philosophy...
6. I do not take it as a given that advancing LLMs is good, and have a lot more to say wrt where I think innovation should focus more. For example, a focus on *data* -- curation, measurement, consent, credit, compensation, safety -- would deeply improve technology for everyone.
7. The transparency this release provides is massive for people who want to *learn* about LLMs. For the next generation of technologists to advance over the current, they MUST be able to learn about what's happening now. (cont...)
  • 1 reply
·
meg 
posted an update 27 days ago
view post
Post
457
🤖 👾 Thanks so much to BBC News and the stellar Suranjana Tewari for having me on to talk about US <—> China relationship in AI, and what it means for AI ethics.
eliebak 
posted an update about 1 month ago
view post
Post
4672
Kimi K2 tech report is full of gems as always. Here are my notes on it:

> MuonClip: Pretty crazy how after 70k the training stabilizes and the QK-clip is basically inactive. There is also no loss in perf with QK-clip which is not trivial at all (at small scale but with aggressive threshold). Also a cool explanation of why muon makes the logit explode in appendix E (tl;dr is that muon makes the singular value of the update matrix higher)
> Sparsity scaling laws to justify their ratio, they have a very solid training infra that allows the model to be trained at this sparsity level, they could have increased even more but as sparsity increases the training becomes less efficient.
> They diminish the number of attention heads to make it more efficient for long context since attention heads are a big bottleneck for long context. They also remove 2 of the 3 "first dense" layers in the dsv3 arch.

With the sparsity and attention heads (divided by 2) they achieve 83% increased flops compared to deepseek v3 arch at 128k.

> Data: Rephrasing is KEY. They do a lot more synthetic data generation and rephrase their corpus to have different styles, for longer documents they do it by chunk. I'm (half) surprised by the fact that ONLY 1 epoch (assuming same number of training tokens I think?) of data rephrased 10 times has better accuracy than 10 epochs of the same data rephrased once.
> They do rewriting for Math and Knowledge, for Math they apply the ShallowMath recipe and instruct the model to rephrase in a "learning note" style
> They talk about diversity and probably have some internal stuff/eval to test that, as always still a bit unclear for me how to properly measure that.

The infra is also very nice, quick summary:
> PP=16 (1F1B schedule, a bit custom), EP=16, zero1
> No FP8 computation but for storage of specific layers, selective recomputation for inexpensive block, activation offloading to CPU
davanstrien 
posted an update 3 months ago
view post
Post
3491
Inspired by Hugging Face's official MCP server, I've developed a complementary tool that exposes my semantic search API to enhance discovery across the HF platform.

Key capabilities:

- AI-powered semantic search for models and datasets
- Parameter count analysis via safetensors metadata
- Trending content discovery
- Find similar models/datasets functionality
- 11 tools total for enhanced ecosystem navigation

The semantic search goes beyond simple keyword matching, understanding context and relationships between different models and datasets.

Example query: "Find around 10 reasoning Hugging Face datasets published in 2025 focusing on topics other than maths and science. Show a link and a short summary for each dataset." (results in video!)

https://github.com/davanstrien/hub-semantic-search-mcp
  • 1 reply
·