HuggingFaceFW-Dev

Enterprise
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

HuggingFaceFW-Dev's activity

loubnabnlย 
posted an update 17 days ago
davanstrienย 
posted an update about 1 month ago
view post
Post
2191
Came across a very nice submission from @marcodsn for the reasoning datasets competition (https://huggingface.co/blog/bespokelabs/reasoning-datasets-competition).

The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:

- Extracts both the logical structure AND researcher intuition from academic papers
- Adopts the persona of researchers "before experiments" to capture exploratory thinking
- Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model

It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.

I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.

Dataset can be found here: marcodsn/academic-chains (give it a like!)
thomwolfย 
posted an update about 2 months ago
view post
Post
5030
If you've followed the progress of robotics in the past 18 months, you've likely noticed how robotics is increasingly becoming the next frontier that AI will unlock.

At Hugging Faceโ€”in robotics and across all AI fieldsโ€”we believe in a future where AI and robots are open-source, transparent, and affordable; community-built and safe; hackable and fun. We've had so much mutual understanding and passion working with the Pollen Robotics team over the past year that we decided to join forces!

You can already find our open-source humanoid robot platform Reachy 2 on the Pollen website and the Pollen community and people here on the hub at pollen-robotics

We're so excited to build and share more open-source robots with the world in the coming months!
  • 1 reply
ยท
davanstrienย 
posted an update about 2 months ago
view post
Post
1688
I've created a v1 dataset ( davanstrien/reasoning-required) and model ( davanstrien/ModernBERT-based-Reasoning-Required) to help curate "wild text" data for generating reasoning examples beyond the usual code/math/science domains.

- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity
- I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions

My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.

This significantly reduces computation costs while expanding reasoning dataset domain coverage.
thomwolfย 
posted an update 2 months ago
view post
Post
3485
The new DeepSite space is really insane for vibe-coders
enzostvs/deepsite

With the wave of vibe-coding-optimized LLMs like the latest open-source DeepSeek model (version V3-0324), you can basically prompt out-of-the-box and create any app and game in one-shot.

It feels so powerful to me, no more complex framework or under-the-hood prompt engineering to have a working text-to-app tool.

AI is eating the world and *open-source* AI is eating AI itself!

PS: and even more meta is that the DeepSite app and DeepSeek model are both fully open-source code => time to start recursively improve?

PPS: you still need some inference hosting unless you're running the 600B param model at home, so check the very nice list of HF Inference Providers for this model: deepseek-ai/DeepSeek-V3-0324
  • 1 reply
ยท
thomwolfย 
posted an update 3 months ago
view post
Post
2918
We've kept pushing our Open-R1 project, an open initiative to replicate and extend the techniques behind DeepSeek-R1.

And even we were mind-blown by the results we got with this latest model we're releasing: โšก๏ธOlympicCoder ( open-r1/OlympicCoder-7B and open-r1/OlympicCoder-32B)

It's beating Claude 3.7 on (competitive) programming โ€“a domain Anthropic has been historically really strong atโ€“ and it's getting close to o1-mini/R1 on olympiad level coding with just 7B parameters!

And the best part is that we're open-sourcing all about its training dataset, the new IOI benchmark, and more in our Open-R1 progress report #3: https://huggingface.co/blog/open-r1/update-3

Datasets are are releasing:
- open-r1/codeforces
- open-r1/codeforces-cots
- open-r1/ioi
- open-r1/ioi-test-cases
- open-r1/ioi-sample-solutions
- open-r1/ioi-cots
- open-r1/ioi-2024-model-solutions
eliebakย 
posted an update 3 months ago
view post
Post
1790
Google just dropped an exciting technical report for the brand-new Gemma3 model! ๐Ÿš€ Here are my personal notes highlighting the most intriguing architectural innovations, design choices, and insights from this release:

1) Architecture choices:
> No more softcaping, replace by QK-Norm
> Both Pre AND Post Norm
> Wider MLP than Qwen2.5, ~ same depth
> SWA with 5:1 and 1024 (very small and cool ablation on the paper!)
> No MLA to save KV cache, SWA do the job!

2) Long context
> Only increase the rope in the global layer (to 1M)
> Confirmation that it's harder to do long context for smol models, no 128k for the 1B
> Pretrained with 32k context? seems very high
> No yarn nor llama3 like rope extension

3) Distillation
> Only keep te first 256 logits for the teacher
> Ablation on the teacher gap (tl;dr you need some "patience" to see that using a small teacher is better)
> On policy distillation yeahh (by
@agarwl_
et al), not sure if the teacher gap behave the same here, curious if someone have more info?

4) Others
> Checkpoint with QAT, that's very cool
> RL using improve version of BOND, WARM/WARP good excuse to look at
@ramealexandre
papers
> Only use Zero3, no TP/PP if i understand correctly ?
> Training budget relatively similar than gemma2
  • 1 reply
ยท
lewtunย 
posted an update 3 months ago
view post
Post
2691
Introducing OlympicCoder: a series of open reasoning models that can solve olympiad-level programming problems ๐Ÿง‘โ€๐Ÿ’ป

- 7B open-r1/OlympicCoder-7B
- 32B open-r1/OlympicCoder-32B

We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger ๐Ÿ’ช

Together with the models, we are releasing:

๐Ÿ“ŠCodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots

๐Ÿ† IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi

For links to the models and datasets, check out our latest progress report from Open R1: https://huggingface.co/blog/open-r1/update-3
  • 1 reply
ยท
davanstrienย 
posted an update 3 months ago
view post
Post
2943
๐Ÿ“Š Introducing "Hugging Face Dataset Spotlight" ๐Ÿ“Š

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
davanstrienย 
posted an update 3 months ago
view post
Post
3692
Quick POC: Turn a Hugging Face dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though ๐Ÿ˜…

Here is an example for eth-nlped/stepverify
  • 2 replies
ยท