mlo-data-collab

community

AI & ML interests

None defined yet.

BGrAp0TCnx's activity

jasoncorkillΒ 
posted an update 13 days ago
view post
Post
3227
πŸš€ We tried something new!

We just published a dataset using a new (for us) preference modality: direct ranking based on aesthetic preference. We ranked a couple of thousand images from most to least preferred, all sampled from the Open Image Preferences v1 dataset by the amazing @data-is-better-together team.

πŸ“Š Check it out here:
Rapidata/2k-ranked-images-open-image-preferences-v1

We're really curious to hear your thoughts!
Is this kind of ranking interesting or useful to you? Let us know! πŸ’¬

If it is, please consider leaving a ❀️ and if we hit 30 ❀️s, we’ll go ahead and rank the full 17k image dataset!
Β·
jasoncorkillΒ 
posted an update 15 days ago
view post
Post
3040
πŸ”₯ Yesterday was a fire day!
We dropped two brand-new datasets capturing Human Preferences for text-to-video and text-to-image generations powered by our own crowdsourcing tool!

Whether you're working on model evaluation, alignment, or fine-tuning, this is for you.

1. Text-to-Video Dataset (Pika 2.2 model):
Rapidata/text-2-video-human-preferences-pika2.2

2. Text-to-Image Dataset (Reve-AI Halfmoon):
Rapidata/Reve-AI-Halfmoon_t2i_human_preference

Let’s train AI on AI-generated content with humans in the loop.
Let’s make generative models that actually get us.
jasoncorkillΒ 
posted an update 21 days ago
view post
Post
2374
πŸš€ Rapidata: Setting the Standard for Model Evaluation

Rapidata is proud to announce our first independent appearance in academic research, featured in the Lumina-Image 2.0 paper. This marks the beginning of our journey to become the standard for testing text-to-image and generative models. Our expertise in large-scale human annotations allows researchers to refine their models with accurate, real-world feedback.

As we continue to establish ourselves as a key player in model evaluation, we’re here to support researchers with high-quality annotations at scale. Reach out to [email protected] to see how we can help.

Lumina-Image 2.0: A Unified and Efficient Image Generative Framework (2503.21758)
jasoncorkillΒ 
posted an update 27 days ago
view post
Post
2253
πŸ”₯ It's out! We published the dataset for our evaluation of @OpenAI 's new 4o image generation model.

Rapidata/OpenAI-4o_t2i_human_preference

Yesterday we published the first large evaluation of the new model, showing that it absolutely leaves the competition in the dust. We have now made the results and data available here! Please check it out and ❀️ !
jasoncorkillΒ 
posted an update 28 days ago
view post
Post
2044
πŸš€ First Benchmark of @OpenAI 's 4o Image Generation Model!

We've just completed the first-ever (to our knowledge) benchmarking of the new OpenAI 4o image generation model, and the results are impressive!

In our tests, OpenAI 4o image generation absolutely crushed leading competitors, including @black-forest-labs , @google , @xai-org , Ideogram, Recraft, and @deepseek-ai , in prompt alignment and coherence! They hold a gap of more than 20% to the nearest competitor in terms of Bradley-Terry score, the biggest we have seen since the beginning of the benchmark!

The benchmarks are based on 200k human responses collected through our API. However, the most challenging part wasn't the benchmarking itself, but generating and downloading the images:

- 5 hours to generate 1000 images (no API available yet)
- Just 10 minutes to set up and launch the benchmark
- Over 200,000 responses rapidly collected

While generating the images, we faced some hurdles that meant that we had to leave out certain parts of our prompt set. Particularly we observed that the OpenAI 4o model proactively refused to generate certain images:

🚫 Styles of living artists: completely blocked
🚫 Copyrighted characters (e.g., Darth Vader, Pokémon): initially generated but subsequently blocked

Overall, OpenAI 4o stands out significantly in alignment and coherence, especially excelling in certain unusual prompts that have historically caused issues such as: 'A chair on a cat.' See the images for more examples!
  • 1 reply
Β·
jasoncorkillΒ 
posted an update about 1 month ago
view post
Post
3808
At Rapidata, we compared DeepL with LLMs like DeepSeek-R1, Llama, and Mixtral for translation quality using feedback from over 51,000 native speakers. Despite the costs, the performance makes it a valuable investment, especially in critical applications where translation quality is paramount. Now we can say that Europe is more than imposing regulations.

Our dataset, based on these comparisons, is now available on Hugging Face. This might be useful for anyone working on AI translation or language model evaluation.

Rapidata/Translation-deepseek-llama-mixtral-v-deepl
  • 1 reply
Β·
jasoncorkillΒ 
posted an update about 1 month ago
view post
Post
2238
Benchmarking Google's Veo2: How Does It Compare?

The results did not meet expectations. Veo2 struggled with style consistency and temporal coherence, falling behind competitors like Runway, Pika, Tencent, and even Alibaba. While the model shows promise, its alignment and quality are not yet there.

Google recently launched Veo2, its latest text-to-video model, through select partners like fal.ai. As part of our ongoing evaluation of state-of-the-art generative video models, we rigorously benchmarked Veo2 against industry leaders.

We generated a large set of Veo2 videos spending hundreds of dollars in the process and systematically evaluated them using our Python-based API for human and automated labeling.

Check out the ranking here: https://www.rapidata.ai/leaderboard/video-models

Rapidata/text-2-video-human-preferences-veo2
jasoncorkillΒ 
posted an update about 2 months ago
view post
Post
3856
Has OpenGVLab Lumina Outperformed OpenAI’s Model?

We’ve just released the results from a large-scale human evaluation (400k annotations) of OpenGVLab’s newest text-to-image model, Lumina. Surprisingly, Lumina outperforms OpenAI’s DALL-E 3 in terms of alignment, although it ranks #6 in our overall human preference benchmark.

To support further development in text-to-image models, we’re making our entire human-annotated dataset publicly available. If you’re working on model improvements and need high-quality data, feel free to explore.

We welcome your feedback and look forward to any insights you might share!

Rapidata/OpenGVLab_Lumina_t2i_human_preference
jasoncorkillΒ 
posted an update about 2 months ago
view post
Post
2480
The Sora Video Generation Aligned Words dataset contains a collection of word segments for text-to-video or other multimodal research. It is intended to help researchers and engineers explore fine-grained prompts, including those where certain words are not aligned with the video.

We hope this dataset will support your work in prompt understanding and advance progress in multimodal projects.

If you have specific questions, feel free to reach out.
Rapidata/sora-video-generation-aligned-words
jasoncorkillΒ 
posted an update 2 months ago
view post
Post
2858
Integrating human feedback is vital for evolving AI models. Boost quality, scalability, and cost-effectiveness with our crowdsourcing tool!

..Or run A/B tests and gather thousands of responses in minutes. Upload two images, ask a question, and watch the insights roll in!

Check it out here and let us know your feedback: https://app.rapidata.ai/compare
jasoncorkillΒ 
posted an update 2 months ago
view post
Post
2559
This dataset was collected in roughly 4 hours using the Rapidata Python API, showcasing how quickly large-scale annotations can be performed with the right tooling!

All that at less than the cost of a single hour of a typical ML engineer in Zurich!

The new dataset of ~22,000 human annotations evaluating AI-generated videos based on different dimensions, such as Prompt-Video Alignment, Word for Word Prompt Alignment, Style, Speed of Time flow and Quality of Physics.

Rapidata/text-2-video-Rich-Human-Feedback
  • 1 reply
Β·
jasoncorkillΒ 
posted an update 2 months ago
view post
Post
4663
Runway Gen-3 Alpha: The Style and Coherence Champion

Runway's latest video generation model, Gen-3 Alpha, is something special. It ranks #3 overall on our text-to-video human preference benchmark, but in terms of style and coherence, it outperforms even OpenAI Sora.

However, it struggles with alignment, making it less predictable for controlled outputs.

We've released a new dataset with human evaluations of Runway Gen-3 Alpha: Rapidata's text-2-video human preferences dataset. If you're working on video generation and want to see how your model compares to the biggest players, we can benchmark it for you.

πŸš€ DM us if you’re interested!

Dataset: Rapidata/text-2-video-human-preferences-runway-alpha
  • 1 reply
Β·
jasoncorkillΒ 
posted an update 3 months ago
view post
Post
2730
We benchmarked @xai-org 's Aurora model, as far as we know the first public evaluation of the model at scale.

We collected 401k human annotations in over the past ~2 days for this, we have uploaded all of the annotation data here on huggingface with a fully permissive license
Rapidata/xAI_Aurora_t2i_human_preferences
  • 1 reply
Β·
jasoncorkillΒ 
posted an update 3 months ago
view post
Post
1148
We uploaded huge human annotated preference dataset for image generation. Instead of just having people choose which model they preferer, we annotated an alignment score on a word by word basis for the prompt. rate the images on coherence, overall alignment and style preference. Those images that score badly were also given to annotators to highlight problem areas. Check it out! Rapidata/text-2-image-Rich-Human-Feedback

We also wrote a blog post for those who want a bit more detail:
https://huggingface.co/blog/RapidataAI/beyond-image-preferences
jasoncorkillΒ 
posted an update 4 months ago