ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ordersharelook/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'itself be a ground for reversal—i.e., for his winning a reversal on appeal. In light of this \nanomaly, we cannot find that a lack of stated reasons constitutes an abuse of discretion here. \n¶ 36 \n \nWhere no transcript or bystander’s report of the proceedings was provided to us, and where \nno reasons were stated in the order itself, we presume that the trial court acted appropriately',
'What is presumed about the trial court due to the absence of a transcript or bystander’s report?',
'What type of costs does the payment structure include predominantly?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.524 |
cosine_accuracy@3 | 0.5688 |
cosine_accuracy@5 | 0.6631 |
cosine_accuracy@10 | 0.7326 |
cosine_precision@1 | 0.524 |
cosine_precision@3 | 0.4997 |
cosine_precision@5 | 0.3824 |
cosine_precision@10 | 0.2243 |
cosine_recall@1 | 0.1841 |
cosine_recall@3 | 0.4921 |
cosine_recall@5 | 0.6149 |
cosine_recall@10 | 0.7152 |
cosine_ndcg@10 | 0.6248 |
cosine_mrr@10 | 0.57 |
cosine_map@100 | 0.6114 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5162 |
cosine_accuracy@3 | 0.5518 |
cosine_accuracy@5 | 0.6383 |
cosine_accuracy@10 | 0.7094 |
cosine_precision@1 | 0.5162 |
cosine_precision@3 | 0.4874 |
cosine_precision@5 | 0.3679 |
cosine_precision@10 | 0.2189 |
cosine_recall@1 | 0.1817 |
cosine_recall@3 | 0.4812 |
cosine_recall@5 | 0.5922 |
cosine_recall@10 | 0.6984 |
cosine_ndcg@10 | 0.6107 |
cosine_mrr@10 | 0.5574 |
cosine_map@100 | 0.5987 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4822 |
cosine_accuracy@3 | 0.5317 |
cosine_accuracy@5 | 0.6167 |
cosine_accuracy@10 | 0.694 |
cosine_precision@1 | 0.4822 |
cosine_precision@3 | 0.4616 |
cosine_precision@5 | 0.3564 |
cosine_precision@10 | 0.213 |
cosine_recall@1 | 0.1698 |
cosine_recall@3 | 0.4545 |
cosine_recall@5 | 0.5719 |
cosine_recall@10 | 0.6793 |
cosine_ndcg@10 | 0.5855 |
cosine_mrr@10 | 0.5285 |
cosine_map@100 | 0.5712 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.442 |
cosine_accuracy@3 | 0.473 |
cosine_accuracy@5 | 0.5611 |
cosine_accuracy@10 | 0.643 |
cosine_precision@1 | 0.442 |
cosine_precision@3 | 0.4189 |
cosine_precision@5 | 0.3224 |
cosine_precision@10 | 0.1983 |
cosine_recall@1 | 0.1548 |
cosine_recall@3 | 0.4123 |
cosine_recall@5 | 0.5179 |
cosine_recall@10 | 0.6315 |
cosine_ndcg@10 | 0.539 |
cosine_mrr@10 | 0.4835 |
cosine_map@100 | 0.5243 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3539 |
cosine_accuracy@3 | 0.3849 |
cosine_accuracy@5 | 0.4467 |
cosine_accuracy@10 | 0.524 |
cosine_precision@1 | 0.3539 |
cosine_precision@3 | 0.34 |
cosine_precision@5 | 0.2612 |
cosine_precision@10 | 0.1617 |
cosine_recall@1 | 0.1227 |
cosine_recall@3 | 0.3323 |
cosine_recall@5 | 0.4128 |
cosine_recall@10 | 0.5093 |
cosine_ndcg@10 | 0.4342 |
cosine_mrr@10 | 0.3893 |
cosine_map@100 | 0.4293 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 28 tokens
- mean: 97.37 tokens
- max: 158 tokens
- min: 7 tokens
- mean: 16.47 tokens
- max: 31 tokens
- Samples:
positive anchor privilege because the plaintiff says that these five opinions have been officially disclosed in the
public domain.70 See Pl.’s First 445 Opp’n at 32–33. Similar to the plaintiff’s argument above
as to the CIA’s Exemption 1 withholdings, see supra Part III.F.1, the plaintiff contends that
“[t]his evidence casts significant doubt on the good faith of OLC, and the Court should orderWhat is similar to the plaintiff’s argument about the CIA's Exemption 1 withholdings?
The first issue we must resolve is whether, as plaintiff argues, we lack jurisdiction to hear
this appeal. People v. Brindley, 2017 IL App (5th) 160189, ¶ 14 (“[t]he first issue we must
address is the jurisdiction of this court to hear” the appeal).
¶ 21
A. Court of Limited Jurisdiction
¶ 22What paragraph immediately follows the mention of jurisdiction?
met its burden to show that Senetas is a competitor to DR. The potential for a
“joint collaboration” between Senetas and DR does not necessarily mean they are
competitors. Senetas operates in a different market than DR and there is no
69 Senetas’ May 11, 2017 press release announcing its investment in DR includes a quoteOn what date did Senetas release a press statement about its investment in DR?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 5.6176 | - | - | - | - | - |
1.0 | 12 | - | 0.5899 | 0.5777 | 0.5526 | 0.4889 | 0.3844 |
1.7033 | 20 | 2.4277 | - | - | - | - | - |
2.0 | 24 | - | 0.6201 | 0.6050 | 0.5781 | 0.5215 | 0.4136 |
2.5275 | 30 | 1.8308 | - | - | - | - | - |
3.0 | 36 | - | 0.6248 | 0.6075 | 0.5845 | 0.5373 | 0.4347 |
3.3516 | 40 | 1.5394 | - | - | - | - | - |
4.0 | 48 | - | 0.6248 | 0.6107 | 0.5855 | 0.539 | 0.4342 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ordersharelook/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.524
- Cosine Accuracy@3 on dim 768self-reported0.569
- Cosine Accuracy@5 on dim 768self-reported0.663
- Cosine Accuracy@10 on dim 768self-reported0.733
- Cosine Precision@1 on dim 768self-reported0.524
- Cosine Precision@3 on dim 768self-reported0.500
- Cosine Precision@5 on dim 768self-reported0.382
- Cosine Precision@10 on dim 768self-reported0.224
- Cosine Recall@1 on dim 768self-reported0.184
- Cosine Recall@3 on dim 768self-reported0.492