🇹🇭 OpenThaiGPT 1.6 72b
🇹🇭 OpenThaiGPT 1.6 72b is a 72-billion-parameter Thai language model designed for general purpose tasks with strong reasoning capabilities. Building upon the foundation of OpenThaiGPT 1.5, this latest version demonstrates improved performance across a variety of benchmarks, particularly in code reasoning and general language tasks.
Highlights
- Advanced Thai language model with 72 billion parameters
- Strong reasoning capabilities in both Thai and English
- Improved performance over previous OpenThaiGPT versions
- Balanced capabilities across mathematical, coding, and general language tasks
- Enhanced understanding of Thai language and cultural context
Benchmark Results
Benchmarks | OpenThaiGPT 1.6 72b | OpenThaiGPT 1.5 7b | OpenThaiGPT 1.5 14b | OpenThaiGPT 1.5 72b | Typhoon2 Qwen2.5 7b | Typhoon2 Llama3.1 8b | Typhoon2 Llama3.1 70b | NECTEC Pathumma LLM Text 1.0.0 7b |
---|---|---|---|---|---|---|---|---|
AIME24-TH | 6.67 | 0 | 0 | 6.67 | 3.33 | 3.33 | 13.33 | 0 |
AIME24 | 23.33 | 6.67 | 10 | 23.33 | 6.67 | 3.33 | 10 | 0 |
MATH500-TH | 43.2 | 24.2 | 26.2 | 62 | 51.8 | 31 | 55.8 | 21.8 |
MATH500 | 82 | 40.4 | 47.4 | 83.2 | 65.4 | 49.6 | 67.4 | 42.8 |
LiveCodeBench-TH | 32.43 | 22.52 | 21.62 | 12.61 | 9.91 | 8.11 | 27.03 | 0 |
LiveCodeBench | 54.21 | 31.12 | 37.96 | 46.38 | 0.98 | 5.87 | 37.38 | 0 |
OpenThaiEval | 78.7 | 64.5 | 71.26 | 77.16 | 64.76 | 56.63 | 72.54 | 65.27 |
Language Accuracy | 98.2 | 97.6 | 98.4 | 99.4 | 99.4 | 98.6 | 99.8 | 98.6 |
AVERAGE | 52.34 | 35.88 | 39.11 | 51.34 | 37.78 | 32.06 | 47.91 | 28.56 |
Recommended System Prompt
<No system prompt>
Model Technical Report
https://arxiv.org/abs/2504.01789
If OpenThaiGPT has been beneficial for your work, kindly consider citing it as follows:
@misc{yuenyong2025openthaigpt16r1thaicentric,
title={OpenThaiGPT 1.6 and R1: Thai-Centric Open Source and Reasoning Large Language Models},
author={Sumeth Yuenyong and Thodsaporn Chay-intr and Kobkrit Viriyayudhakorn},
year={2025},
eprint={2504.01789},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2504.01789},
}
How to use
Online Web Interface
Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "openthaigpt/openthaigpt-1.6-72b"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "กรุงเทพมหานครคืออะไร"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=16384,
temperature=0.6
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
vLLM
Install VLLM (https://github.com/vllm-project/vllm)
Run server
vllm serve openthaigpt/openthaigpt-1.6-72b --tensor-parallel-size 2
- Note, change
--tensor-parallel-size 2
to the amount of available GPU cards.
- Run inference (CURL example)
curl -X POST 'http://127.0.0.1:8000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"model": "openthaigpt/openthaigpt-1.6-72b",
"messages": [
{
"role": "user",
"content": "กรุงเทพมหานครคืออะไร"
}
],
"max_tokens": 16384,
"temperature": 0.6,
"top_p": 0.95,
"top_k": 40
}'
GPU Memory Requirements
Number of Parameters | FP 16 bits | 8 bits (Quantized) | 4 bits (Quantized) |
---|---|---|---|
72b | 144 GB | 72 GB | 36 GB |
Chat Template
{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n
Key Improvements in OpenThaiGPT 1.6 72b
Compared to OpenThaiGPT 1.5 72b, the 1.6 version shows:
- Significantly better code reasoning performance in both Thai (LiveCodeBench-TH: 32.43 vs 12.61) and English (LiveCodeBench: 54.21 vs 46.38)
- Comparable general language understanding with a high language accuracy of 98.2%
- Better balanced capabilities across mathematical and coding tasks
This model maintains strong performance in general language tasks while improving specialized capabilities, making it suitable for a wide range of applications.
Licenses
- This model is available for Research and Commercial uses under the specified terms. Please see the LICENSE file for more information.
Supports
- Official website: https://openthaigpt.aieat.or.th
- Facebook page: https://web.facebook.com/groups/openthaigpt
- A Discord server for discussion and support here
- E-mail: [email protected]
OpenThaiGPT Team

- Kobkrit Viriyayudhakorn ([email protected] / [email protected])
- Sumeth Yuenyong ([email protected])
- Thodsaporn Chay-intr ([email protected])
Sponsors

ได้รับการสนับสนุน GPU Nvidia H100 x 8 ใบ จากบริษัท สยาม เอไอ คอร์เปอเรชั่น จำกัด: https://siam.ai/
ได้รับทุนวิจัยสนับสนุนจากกองทุนส่งเสริมวิทยาศาสตร์ วิจัยและนวัตกรรม โดยหน่วยบริหารและจัดการทุนด้านการเพิ่มความสามารถในการแข่งขันของประเทศ (บพข.) ร่วมกับ บริษัท ไอแอพพ์เทคโนโลยี จำกัด ซึ่งมี สมาคมผู้ประกอบการปัญญาประดิษฐ์ประเทศไทย เป็นผู้ดำเนินงานโครงการ
Disclaimer: Provided responses are not guaranteed.
- Downloads last month
- 40
Model tree for openthaigpt/openthaigpt-1.6-72b-instruct
Collection including openthaigpt/openthaigpt-1.6-72b-instruct
Evaluation results
- OpenThaiGPT on SkyThought🇹🇭 OpenThaiGPT Benchmark78.700
- AIME24 on SkyThought🇹🇭 OpenThaiGPT Benchmark23.330