Fine-tune 資訊
- 原始模型:
openai/whisper-medium
- 使用音訊數量: 202505
- 使用音訊總長: 122.56 小時
- 音訊平均長度: 2.18 秒
- GPU:
NVIDIA H100 PCIe
x 1 - 訓練時間: 06:56:24
- 模型大小: 2.85 GB
- 訓練參數:
- batch size: 20
- eval batch size: 10
- gradient checkpointing: False
- fp16: False
- bf16: True
Fine-tuned Whisper model for Legislative Yuan of Taiwan
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0186
- Wer: 72.0408
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 10
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0228 | 0.0395 | 400 | 0.0211 | 74.9866 |
0.0201 | 0.0790 | 800 | 0.0201 | 74.2709 |
0.0196 | 0.1185 | 1200 | 0.0194 | 72.9968 |
0.0182 | 0.1580 | 1600 | 0.0190 | 72.7167 |
0.0195 | 0.1975 | 2000 | 0.0186 | 72.0408 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for openfun/openfun-ivod-whisper-medium-common-11-1200
Base model
openai/whisper-medium