File size: 3,829 Bytes
146c0f9 288a4c7 2dda95f 146c0f9 288a4c7 cf911a2 145604e cf911a2 145604e a863382 288a4c7 146c0f9 288a4c7 cf911a2 146c0f9 288a4c7 cf911a2 146c0f9 cf911a2 146c0f9 e6aa8a5 cf911a2 e3c26be 288a4c7 cf911a2 146c0f9 86affba 288a4c7 86affba cf911a2 288a4c7 146c0f9 86affba bb60daa 86affba 146c0f9 bb60daa 146c0f9 86affba 146c0f9 86affba 146c0f9 86affba 9e7012d 86affba cf911a2 9e7012d 86affba cf911a2 86affba cf911a2 9e7012d 86affba cf911a2 9e7012d cf911a2 86affba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
license: apache-2.0
language:
- de
tags:
- sign-language
- whisper
- german
- safetensors
library_name: transformers
model-index:
- name: whisper-large-v3-turbo-german
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: German ASR Data-Mix
type: flozi00/asr-german-mixed
metrics:
- type: wer
value: TBD
datasets:
- flozi00/asr-german-mixed
base_model:
- primeline/whisper-large-v3-german
---
### Summary
Whisper is a powerful speech recognition platform developed by OpenAI. This model has been specially optimized for converting sign language input features into german text.
### Applications
The model is based on 'primeline/whisper-large-v3-german' and used (in combination with google mediapipe) to translate a video of german sign language into text. This model decodes a sequence of input features, where each input feature represents keypoints extracted from a video (body hands, upper body and face), into text.
We keep the decoder frozen, while training the encoder.
## Evaluations - Word error rate
TBD
### Training data
TBD
#### Training process
```python
import torch
from transformers import WhisperForConditionalGeneration, AutoProcessor, AutoTokenizer, AutoConfig
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# When changing the configuration of the preprocessing convolution layers make sure their final output has the shape b x 1280 x seq.
# See custom config in model.py for configuration options.
config = AutoConfig.from_pretrained(
"mrprimenotes/sign-whisper-german",
use_first_embeddings=True,
embedding_stride=2,
conv_dropout=0.1,
skip_connections=True,
conv_preprocessing_layers=[
{
"in_channels": 80,
"out_channels": 384,
"kernel_size": 5,
"padding": 2,
"activation": "gelu"
},
{
"in_channels": 384,
"out_channels": 384,
"kernel_size": 3,
"stride": 2,
"padding": 1,
"activation": "gelu"
}
]
)
tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
# raw model outputs:
# output = model(input_features, labels=labels)
# e.g.
# output.loss
# output.shape --> b x sq
train_dataset = YourSignDataset(...)
val_dataset = YourSignDataset(...)
# Define training arguments
training_args = TrainingArguments(
output_dir="./sign-whisper-german",
num_train_epochs=3,
per_device_train_batch_size=1024,
per_device_eval_batch_size=256,
warmup_steps=500,
weight_decay=0.01,
# Logging settings
logging_dir="./logs",
logging_steps=50,
logging_strategy="steps",
# Evaluation
evaluation_strategy="steps",
eval_steps=100,
# Saving
save_strategy="steps",
save_steps=100,
save_total_limit=5,
resume_from_checkpoint=True,
load_best_model_at_end=True,
fp16=torch.cuda.is_available(),
)
# Initialize trainer with tokenizer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
)
# Train the model
trainer.train()
```
### Use model for inference (with generate)
```python
from transformers import TextStreamer
streamer = TextStreamer(tokenizer, skip_special_tokens=False) #only needed for streaming
# input preprocessing / feature extraction (TBD)
# input_features = ...
# Generate
generated_ids = model.generate(
input_features,
max_new_tokens=128,
return_timestamps=False, #timestamps are not supported
streamer=streamer #only needed for streaming
)
tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
``` |