Update README.md
Browse files
README.md
CHANGED
@@ -42,47 +42,103 @@ TBD
|
|
42 |
### Training data
|
43 |
TBD
|
44 |
|
45 |
-
|
46 |
-
TBD
|
47 |
-
|
48 |
-
### How to use
|
49 |
```python
|
50 |
import torch
|
51 |
-
from transformers import WhisperForConditionalGeneration, AutoProcessor, AutoTokenizer,
|
52 |
-
from datasets import load_dataset
|
53 |
|
54 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
55 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
56 |
|
57 |
-
#
|
58 |
-
model
|
|
|
|
|
59 |
"mrprimenotes/sign-whisper-german",
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
# Load the tokenizer for the model (for decoding)
|
66 |
tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
|
67 |
|
68 |
-
#
|
69 |
-
# input_features =
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
|
|
80 |
```
|
81 |
|
82 |
-
### Use model
|
83 |
```python
|
|
|
|
|
84 |
streamer = TextStreamer(tokenizer, skip_special_tokens=False) #only needed for streaming
|
85 |
|
|
|
|
|
|
|
86 |
# Generate
|
87 |
generated_ids = model.generate(
|
88 |
input_features,
|
@@ -92,8 +148,4 @@ generated_ids = model.generate(
|
|
92 |
)
|
93 |
|
94 |
tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
|
95 |
-
```
|
96 |
-
|
97 |
-
### Training
|
98 |
-
|
99 |
-
When changing the configuration of the preprocessing convolution layers make sure the last output has the shape b x 1280 x seq. See custom config in model.py for configuration options.
|
|
|
42 |
### Training data
|
43 |
TBD
|
44 |
|
45 |
+
#### Training process
|
|
|
|
|
|
|
46 |
```python
|
47 |
import torch
|
48 |
+
from transformers import WhisperForConditionalGeneration, AutoProcessor, AutoTokenizer, AutoConfig
|
|
|
49 |
|
50 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
51 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
52 |
|
53 |
+
# When changing the configuration of the preprocessing convolution layers make sure their final output has the shape b x 1280 x seq.
|
54 |
+
# See custom config in model.py for configuration options.
|
55 |
+
|
56 |
+
config = AutoConfig.from_pretrained(
|
57 |
"mrprimenotes/sign-whisper-german",
|
58 |
+
use_first_embeddings=True,
|
59 |
+
embedding_stride=2,
|
60 |
+
conv_dropout=0.1,
|
61 |
+
skip_connections=True,
|
62 |
+
conv_preprocessing_layers=[
|
63 |
+
{
|
64 |
+
"in_channels": 80,
|
65 |
+
"out_channels": 384,
|
66 |
+
"kernel_size": 5,
|
67 |
+
"padding": 2,
|
68 |
+
"activation": "gelu"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"in_channels": 384,
|
72 |
+
"out_channels": 384,
|
73 |
+
"kernel_size": 3,
|
74 |
+
"stride": 2,
|
75 |
+
"padding": 1,
|
76 |
+
"activation": "gelu"
|
77 |
+
}
|
78 |
+
]
|
79 |
+
)
|
80 |
|
|
|
81 |
tokenizer = AutoTokenizer.from_pretrained("mrprimenotes/sign-whisper-german")
|
82 |
|
83 |
+
# raw model outputs:
|
84 |
+
# output = model(input_features, labels=labels)
|
85 |
+
# e.g.
|
86 |
+
# output.loss
|
87 |
+
# output.shape --> b x sq
|
88 |
|
89 |
+
train_dataset = YourSignDataset(...)
|
90 |
+
val_dataset = YourSignDataset(...)
|
91 |
+
|
92 |
+
# Define training arguments
|
93 |
+
training_args = TrainingArguments(
|
94 |
+
output_dir="./sign-whisper-german",
|
95 |
+
num_train_epochs=3,
|
96 |
+
per_device_train_batch_size=1024,
|
97 |
+
per_device_eval_batch_size=256,
|
98 |
+
warmup_steps=500,
|
99 |
+
weight_decay=0.01,
|
100 |
+
|
101 |
+
# Logging settings
|
102 |
+
logging_dir="./logs",
|
103 |
+
logging_steps=50,
|
104 |
+
logging_strategy="steps",
|
105 |
+
|
106 |
+
# Evaluation
|
107 |
+
evaluation_strategy="steps",
|
108 |
+
eval_steps=100,
|
109 |
+
|
110 |
+
# Saving
|
111 |
+
save_strategy="steps",
|
112 |
+
save_steps=100,
|
113 |
+
save_total_limit=5,
|
114 |
+
resume_from_checkpoint=True,
|
115 |
+
|
116 |
+
load_best_model_at_end=True,
|
117 |
+
fp16=torch.cuda.is_available(),
|
118 |
+
)
|
119 |
|
120 |
+
# Initialize trainer with tokenizer
|
121 |
+
trainer = Trainer(
|
122 |
+
model=model,
|
123 |
+
args=training_args,
|
124 |
+
train_dataset=train_dataset,
|
125 |
+
eval_dataset=val_dataset,
|
126 |
+
tokenizer=tokenizer,
|
127 |
+
)
|
128 |
|
129 |
+
# Train the model
|
130 |
+
trainer.train()
|
131 |
```
|
132 |
|
133 |
+
### Use model for inference (with generate)
|
134 |
```python
|
135 |
+
from transformers import TextStreamer
|
136 |
+
|
137 |
streamer = TextStreamer(tokenizer, skip_special_tokens=False) #only needed for streaming
|
138 |
|
139 |
+
# input preprocessing / feature extraction (TBD)
|
140 |
+
# input_features = ...
|
141 |
+
|
142 |
# Generate
|
143 |
generated_ids = model.generate(
|
144 |
input_features,
|
|
|
148 |
)
|
149 |
|
150 |
tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
|
151 |
+
```
|
|
|
|
|
|
|
|