RLPR
Collection
Extrapolating RLVR to General Domains without Verifiers
β’
6 items
β’
Updated
β’
2
RLPR-Llama3.1-8B-Inst is trained from Llama3.1-8B-Inst with the RLPR framework, which eliminates reliance on external verifiers and is simple and generalizable for more domains.
# pip install accelerate
import transformers
import torch
model_id = "openbmb/RLPR-Llama3.1-8B-Inst"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
If you find our model/code/paper helpful, please consider citing our papers π:
@misc{yu2025rlprextrapolatingrlvrgeneral,
title={RLPR: Extrapolating RLVR to General Domains without Verifiers},
author={Tianyu Yu and Bo Ji and Shouli Wang and Shu Yao and Zefan Wang and Ganqu Cui and Lifan Yuan and Ning Ding and Yuan Yao and Zhiyuan Liu and Maosong Sun and Tat-Seng Chua},
year={2025},
eprint={2506.18254},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2506.18254},
}