GitHub Repo |
Technical Report
👋 Join us on Discord and WeChat
What's New
- [2025.06.06] MiniCPM4 series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report here.🔥🔥🔥
MiniCPM4 Series
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
- MiniCPM4-8B: The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
- MiniCPM4-0.5B: The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
- MiniCPM4-8B-Eagle-FRSpec: Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
- MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu: Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
- MiniCPM4-8B-Eagle-vLLM: Eagle head in vLLM format, accelerating speculative inference for MiniCPM4-8B.
- MiniCPM4-8B-marlin-Eagle-vLLM: Quantized Eagle head for vLLM format, accelerating speculative inference for MiniCPM4-8B.
- BitCPM4-0.5B: Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
- BitCPM4-1B: Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
- MiniCPM4-Survey: Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
- MiniCPM4-MCP: Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements.
- BitCPM4-0.5B-GGUF: GGUF version of BitCPM4-0.5B. (<-- you are here)
- BitCPM4-1B-GGUF: GGUF version of BitCPM4-1B.
Introduction
BitCPM4 are ternary quantized models derived from the MiniCPM series models through quantization-aware training (QAT), achieving significant improvements in both training efficiency and model parameter efficiency.
- Improvements of the training method
- Searching hyperparameters with a wind-tunnel on a small model.
- Using a two-stage training method: training in high-precision first and then QAT, making the best of the trained high-precision models and significantly reducing the computational resources required for the QAT phase.
- High parameter efficiency
- Achieving comparable performance to full-precision models of similar parameter models with a bit width of only 1.58 bits, demonstrating high parameter efficiency.
Usage
./llama-cli -c 1024 -m BitCPM4-0.5B-q4_0.gguf -n 1024 --top-p 0.7 --temp 0.7 --prompt "请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。"
Evaluation Results
BitCPM4's performance is comparable with other full-precision models in same model size.

Statement
- As a language model, MiniCPM generates content by learning from a vast amount of text.
- However, it does not possess the ability to comprehend or express personal opinions or value judgments.
- Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
- Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
LICENSE
- This repository and MiniCPM models are released under the Apache-2.0 License.
Citation
- Please cite our paper if you find our work valuable.
@article{minicpm4,
title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
author={MiniCPM Team},
year={2025}
}